1
|
Yang X, Yu X, Ming Y, Liu H, Zhu W, Yan B, Huang H, Ding L, Qian X, Wang Y, Wu K, Niu M, Yan Q, Huang X, Wang C, Wang Y, He Z. The vertical distribution and metabolic versatility of complete ammonia oxidizing communities in mangrove sediments. ENVIRONMENTAL RESEARCH 2025; 277:121602. [PMID: 40222470 DOI: 10.1016/j.envres.2025.121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Recently discovered complete ammonia-oxidizing (comammox) microorganisms can completely oxidize ammonia to nitrate and play an important role in the nitrogen (N) cycle across various ecosystems. However, little is known about the vertical distribution and metabolic versatility of comammox communities in mangrove ecosystems. Here we profiled comammox communities from deep sediments (up to 5 m) in a mangrove wetland by combining metagenome sequencing and physicochemical properties analysis. Our results showed that the relative abundance of comammox bacteria (23.2 %) was higher than ammonia-oxidizing bacteria (AOB, 12.0 %), but lower than ammonia-oxidizing archaea (AOA, 64.8 %). The abundance of comammox communities significantly (p < 0.01) decreased with the sediment depth, and dissolved organic carbon and total sulfur appeared to be major environmental factors influencing the nitrifying microbial community structure. We also recovered a high-quality metagenome-assembled genome (MAG) of comammox bacteria (Nitrospira sp. bin2030) affiliated with comammox clade A. Nitrospira sp. bin2030 possessed diverse metabolic processes, not only the key genes for ammonia oxidation and urea utilization in the N cycle, but also key genes involved in carbon and energy metabolisms, sulfur metabolism, and environmental adaptation (e.g., oxidative stress, salinity, temperature, heavy metal tolerance). The findings advance our understanding of vertical distribution and metabolic versatility of comammox communities in mangrove sediments, having important implications for quantifying their contribution to nitrification processes in mangrove ecosystems.
Collapse
Affiliation(s)
- Xinlei Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Xiaoli Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Yuzhen Ming
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Wengen Zhu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Bozhi Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Huaxia Huang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Lang Ding
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Xin Qian
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Yukun Wang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Kun Wu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Mingyang Niu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng Wang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China
| | - Yuejun Wang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China.
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, School of Earth Science and Engineering, Sun Yan-sen University, Zhuhai, 519082, China.
| |
Collapse
|
2
|
Li Z, Lin L, Xie X, Ming L, Li S, Liu L, Yuan K, Lin L, Hu L, Luan T, Chen B. Metagenomic analysis manifesting intrinsic relatedness between antibiotic resistance genes and sulfate- and iron-reducing microbes in sediment cores of the Pearl River Estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125176. [PMID: 39442608 DOI: 10.1016/j.envpol.2024.125176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Antibiotic resistance is an increasingly concerned hotspot of human health. Microbial determinants that may affect the profiles of antibiotic resistance genes (ARGs) in the environments need be explored. Here, sediment cores in the Pearl River Estuary (PRE) were analyzed using metagenomic approaches. ARGs were vertically stratified in the PRE sediment cores in terms of both diversity and absolute levels. Multidrug resistance genes could account for approximately 65.0% of the total ARGs, followed by sulfonamides (19.1%), aminoglycosides (5.9%), beta-lactams (4.5%), etc. ARGs related to aminoglycosides, lincosamides, macrolides, sulfonamides and tetracyclines were preferentially enriched in the surface layers of sediment cores. Sulfate-reducing microbes (SRMs) (e.g., Desulfocapsa and Desulfobulbus) and iron-reducing microbes (IRMs) (e.g., Pseudomonas and Sulfurospirillum) were consistently popular and dominant in the PRE sediment cores. The total levels of both SRMs and IRMs were significantly correlated with those of ARGs in the PRE sediment cores (p < 0.01). Network analysis showed that SRM and IRM genera (i.e., Pseudomonas, Shewanella, and Desulfovibrio) had the high co-occurrence with multiple ARG subtypes in the PRE sediment cores such as rsmA, mexK, and mexF. This study highlighted that anaerobic microbes could play significant roles in shaping vertical ARG distribution in the sediments of aquatic environments.
Collapse
Affiliation(s)
- Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lili Ming
- Technical Center of Gongbei Customs District, Zhuhai, 519000, China
| | - Songzhang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lan Liu
- Department of Foodborne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Li Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
3
|
Zhang J, Chen J, Wang C, Wang P, Gao H, Feng B, Fu J. Vertical variation of antibiotic resistance genes and their interaction with environmental nutrients in sediments of Taihu lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122661. [PMID: 39332305 DOI: 10.1016/j.jenvman.2024.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Antibiotic resistance is a growing environmental issue. As a sink for antibiotic resistance genes (ARGs), lake surface sediments are well known for the spread of ARGs. However, the distribution pattern of ARGs and their relationship with environmental factors in vertical sediment layers are unclear. In this study, we investigated the resistome distribution in sediment cores from Taihu Lake using metagenomic analysis. The results showed that the abundance of total ARGs increased by 153% as the sediment depth rose from 0 to 50 cm, and the ARG Shannon index significantly increased. Among all the ARG types, efflux pump genes (e.g., mexT and mexW) were dominant, especially in 40-50 cm sediment. The variation in ARG with depth described above was related to the changes in bacterial adaptation to environmental gradients. Specifically, sulfate and nitrate concentrations decreased with depth, and random forest analysis showed that they were the main factors affecting the changes in ARG abundance. Environmental factors were also found to indirectly impact the distribution of ARGs by affecting the bacterial community. Potential sulfate-reducing gene/nitrate-reducing gene-ARG co-hosts were annotated through metagenomic assembly. The dominant co-hosts, Curvibacter, and Comamonas, which were enriched in deeper sediments, may have contributed to the enrichment of ARGs in deep sediments. Overall, our findings demonstrated that bacterial-mediated sulfate and nitrate reduction was closely related to sediment resistance, which provided new insights into the control of antibiotic resistance.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Jingjing Fu
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang, 311122, PR China
| |
Collapse
|
4
|
Wang J, Ou Y, Li R, Tao C, Liu H, Li R, Shen Z, Shen Q. The occurrence of banana Fusarium wilt aggravates antibiotic resistance genes dissemination in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116982. [PMID: 39217893 DOI: 10.1016/j.ecoenv.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches. In total, 23 ARG types, with 399 subtypes, were detected using a metagenomics approach, whereas 23 ARG types, with 452 subtypes, were discovered using a metatranscriptomics method. Furthermore, the metagenomics analysis revealed that the ARG total abundance levels were greater in rhizospheres (0.45 ARGs/16S rRNA on average) compared with bulk (0.32 ARGs/16S rRNA on average) soils. Interestingly, metatranscriptomics revealed that the total ARG abundances were greater in disease-conducive (8.85 ARGs/16S rRNA on average) soils than disease suppressive (1.45 ARGs/16S rRNA on average) soils. Mobile genetic elements showed the same trends as ARGs. Network and binning analyses indicated that Mycobacterium, Streptomyces, and Blastomonas are the main potential hosts of ARGs. Furthermore, Bacillus was significantly and negatively correlated with Fusarium (P < 0.05, r = -0.84) and hosts of ARGs (i.e., Mycobacterium, Streptomyces, and Blastomonas). By comparing metagenomic and metatranscriptomic analyses,this study demonstrated that metatranscriptomics may be more sensitive in indicating ARGs activities in soil. Our findings enable the more accurate assessment of the transmission risk of ARGs. The data provide a new perspective for recognizing soil health, in which soil-borne disease outbreaks appear to be associated with ARG spread, whereas beneficial microbe enrichment may mitigate wilt disease and ARG transmission.
Collapse
Affiliation(s)
- Jiabao Wang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yannan Ou
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ruochen Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Yan D, Han Y, Zhong M, Wen H, An Z, Capo E. Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. ENVIRONMENT INTERNATIONAL 2024; 186:108654. [PMID: 38621322 DOI: 10.1016/j.envint.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.
Collapse
Affiliation(s)
- Dongna Yan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an, Shaanxi 710061, China.
| | - Meifang Zhong
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden
| | - Hanfeng Wen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden.
| |
Collapse
|
6
|
Huang W, Zhao Y, Zhang L, Shi Y, Wang Z, Mai Y, Shu L. Soil physical structure drives N-glycan mediated trophic interactions in soil amoebae: Mechanisms and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167509. [PMID: 37788775 DOI: 10.1016/j.scitotenv.2023.167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Soil protozoa are an essential part of the terrestrial ecosystem, playing a vital role in the global element cycling and energy flow. However, one research gap is what are the key factors driving their diversity and environmental fates. In this study, we hypothesized that soil texture could affect soil protozoa's predation and their interactions with environmental pollutants, and we tested it by using a soil amoeba Dictyostelium discoideum as a model system. We found that soil texture affected amoeba's growth and development. In addition, environmental factors cannot explain the variation of amoeba's fitness in different soil textures. Soil sandy particles and water content rather than particle size contribute to amoeba's fitness. Furthermore, different soil textures induced distinct transcriptional responses to amoebae, especially N-glycan-related and multiple signaling pathways and the expression of key genes (e.g., Ras superfamily, cxgE, trap1). The expression of N-glycan-related pathways, which is positively correlated with amoeba predation, was inhibited in sand soil, decreasing amoeba's fitness. Finally, the results showed that soil texture also affects amoeba's interaction with environmental pollutants. In conclusion, this study shows that soil physical structures affect amoeba's interactions with bacteria and environmental pollutants. SYNOPSIS: Soil texture affects soil protozoa's growth and development and their interactions with environmental pollutants.
Collapse
Affiliation(s)
- Wei Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yikun Shi
- Department of Mechanical and Electronic Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zihe Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingwen Mai
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|