1
|
Chen Z, Gao P, Lu Y, Cui X, Peng F. Hydrogen peroxide-aged biochar mitigating greenhouse gas emissions during co-composting of swine manure with rice bran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126255. [PMID: 40239939 DOI: 10.1016/j.envpol.2025.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Compared to fresh biochar, aged biochar has a more significant effect on mitigating greenhouse gas (GHG) emissions in farmland soil. However, there is a relative scarcity of research addressing this effect in aerobic composting. In this study, a co-composting of swine manure and rice bran (NBC), with the addition of fresh biochar (FBC) and hydrogen peroxide-aged biochar (ABC), was conducted to investigate the dynamic changes in physicochemical properties, microbial communities, GHG emissions and related functional genes during different periods. In comparison to NBC, FBC led to a 32 % decrease in total GHG emissions (CO2-equiv), including a 29 % reduction in CO2 emissions, a 45 % reduction in CH4 emissions, and a 35 % decrease in N2O emissions. Furthermore, ABC resulted in a 14 % decrease in GHG emission (CO2-equiv), comprising a 47 % reduction in CH4 emissions and a 23 % decrease in N2O emissions compared to FBC. These findings indicated that the addition of aged biochar has a more significant impact on GHG reduction during composting. Network analyses, Mantel tests and redundancy analyses suggested that the mechanism behind the lowest GHG emissions in ABC is the reduction of the relative abundance of fungi associated with CH4 emissions, along with the nirS and nirK genes associated with denitrification. This reduction is associated with the decreasing anaerobic zones resulting from the increased pore volume in biochar after aging. Overall, this study demonstrates that hydrogen peroxide aging enhances the GHG-reducing efficiency in biochar, and provides new insights into the development of GHG-reducing technologies in composting.
Collapse
Affiliation(s)
- Zixun Chen
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Peng Gao
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Yaoxiong Lu
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Xinwei Cui
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Fuyuan Peng
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
2
|
Chen J, Wang R, Wang C, Wang P, Gao H, Hu Y, Nie Q, Zhang S. Enhanced microbial degradation of hexabromocyclododecane in riparian sediments through regulating flooding regimes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137406. [PMID: 40098214 DOI: 10.1016/j.jhazmat.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Hexabromocyclododecane (HBCD), a persistent halogenated organic pollutant, has been commonly detected in river sediments, especially in riparian zones, but strategies for promoting its microbial degradation remain insufficiently explored. This study hypothesized that regulating the flooding regime of sediments could accelerate microbial degradation of HBCD in riparian zones and evaluated the underlying mechanisms. Results showed that, compared with high-frequency flooding-drying or no alternations, the low-frequency flooding-drying alternation (6 weeks of flooding and 6 weeks of drying, 6F:6D) significantly promoted microbial degradation of HBCD. This may be due to changes in sediment redox potential under the 6F:6D regime, facilitating the sequential reductive debromination and aerobic degradation process of HBCD. The abundances of organohalide-respiring bacteria (Dehalococcoides spp. and Dehalogenimonas spp.) were always high in the 6F:6D regime, irrespective of flooding or drying periods. Furthermore, the complex bacterial co-occurrence patterns, specific ecological clusters, and potential keystone species including the genera Methylibium, Nitrospira, and Dehalococcoides, may play important degradative roles of HBCD in the 6F:6D regime. Overall, microbial degradation of HBCD can be promoted under low-frequency flooding-drying alternation regulated by hydraulic structures, providing an effective and eco-friendly strategy for ecological restoration.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shunqing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
3
|
Zhou H, Wu Z, Wang X, Jiang L, Sun H, Li H, Yan Z, Wang Y, Yao X, Zhang C, Tang J. 6PPD-quinone exposure induces oxidative damage and physiological disruption in Eisenia fetida: An integrated analysis of phenotypes, multi-omics, and intestinal microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138334. [PMID: 40288322 DOI: 10.1016/j.jhazmat.2025.138334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The environmental prevalence of the tire wear-derived emerging pollutant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) has increasingly raised public concern. However, knowledge of the adverse effects of 6PPD-Q on soil fauna is scarce. In this study, we elucidated its impact on soil fauna, specifically on the earthworm Eisenia fetida. Our investigation encompassed phenotypic, multi-omics, and microbiota analyses to assess earthworm responses to a gradient of 6PPD-Q contamination (10, 100, 1000, and 5000 μg/kg dw soil). Post-28-day exposure, 6PPD-Q was found to bioaccumulate in earthworms, triggering reactive oxygen species production and consequent oxidative damage to coelomic and intestinal tissues. Transcriptomic and metabolomic profiling revealed several physiological perturbations, including inflammation, immune dysfunction, metabolic imbalances, and genetic toxicity. Moreover, 6PPD-Q perturbed the intestinal microbiota, with high dosages significantly suppressing microbial functions linked to metabolism and information processing (P < 0.05). These alterations were accompanied by increased mortality and weight loss in the earthworms. Specifically, at an environmental concentration of 6PPD-Q (1000 μg/kg), we observed a substantial reduction in survival rate and physiological disruptions. This study provides important insights into the environmental hazards of 6PPD-Q to soil biota and reveals the underlying toxicological mechanisms, underscoring the need for further research to mitigate its ecological footprint.
Collapse
Affiliation(s)
- Hanghai Zhou
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Zhou Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Xin Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Hong Sun
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Hua Li
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Zhongyong Yan
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, Zhejiang 316021, China
| | - Yuan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Xiaohong Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Jiangwu Tang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
4
|
Song Q, Zhou B, Song Y, Du X, Chen H, Zuo R, Zheng J, Yang T, Sang Y, Li J. Microbial community dynamics and bioremediation strategies for petroleum contamination in an in-service oil Depot, middle-lower Yellow River Basin. Front Microbiol 2025; 16:1544233. [PMID: 40241730 PMCID: PMC12000076 DOI: 10.3389/fmicb.2025.1544233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated soil and groundwater contamination at an in-service oil transportation station in the middle-lower Yellow River Basin, China. Spatial analysis combined with 16S rRNA and ITS sequencing revealed localized heavy metal (Cu, Ni, Cd, Pb) and petroleum hydrocarbon (PHs: 15.0 mg/kg) contamination in the oily sewage treatment area, with vertical migration constrained by silty sand layers. Volatile organic compounds (VOCs) primarily originated from oil tank emissions. Groundwater exhibited hydraulic gradient-driven downstream migration of PHs (0.03-0.04 mg/L) and arsenic (1.1-1.5 μg/L). Indigenous microbial communities exhibited redox-stratified functional differentiation: unclassified Comamonadaceae (Proteobacteria) dominated aerobic zones (monitoring well D5), utilizing nitrate for PHs degradation, while Desulfosporosinus (Firmicutes) mediated sulfate-coupled anaerobic alkane degradation and metal immobilization in anoxic zones (D6). Fungal communities featured Trametes (Basidiomycota), facilitating ligninolytic PAH breakdown via peroxidase secretion. Functional prediction (FAPROTAX/FUNGuild) confirmed a synergistic "fungal preprocessing-bacterial mineralization" mechanism. Microbial metabolic plasticity (e.g., nitrogen respiration, photoautotrophy) enabled adaptation to redox fluctuations. Given the site's medium-low risk profile, we proposed a tiered management framework: (1) in situ bioremediation that prioritizes indigenous microbes, (2) hierarchical risk zoning, and (3) dynamic monitoring networks. These strategies align with China's Green Low-Carbon Remediation principles through low-energy microbial technologies. The findings provide a mechanistic basis for balancing industrial operations and ecological health in the Yellow River Basin.
Collapse
Affiliation(s)
- Quanwei Song
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| | - Bingyu Zhou
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yinan Song
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| | - Xianyuan Du
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| | - Hongkun Chen
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Jin Zheng
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| | - Tingyu Yang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Jufeng Li
- CNPC Research Institute of Safety and Environment Technology, Beijing, China
| |
Collapse
|
5
|
Yang L, Sun Y, Zhang J, Zhu L, Xu Z, Liang Y, Song X, Chen X. Multi-omics reveal an overlooked pathway for H 2S production induced by bacterial biogenesis from composting. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136827. [PMID: 39662346 DOI: 10.1016/j.jhazmat.2024.136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Sulfate reduction has long been considered a leading cause of hydrogen sulfide (H2S) emissions from composting, causing serious air pollution and health threats. H2S biogenesis through cysteine cleavage is a known pathway for bacteria to resist oxidative stress. However, whether the biogenesis pathway exacerbates H2S emission during composting with dramatic temperature changes and oxidative stress is largely unknown. Here, we used DL-propargylglycine (PAG), an inhibitor of cysteine lyase (cystathionine γ-lyase), to explore the contribution of biogenesis pathway to H2S production during composting with different aeration rates. We found that PAG addition significantly inhibited H2S emission by 45.52 % and 19.74 % at high and low aeration rates, respectively. PAG addition reduced the diversity of core bacteria associated with H2S production. Metagenomic and metaproteomic analysis further revealed that PAG decreased the abundance of sulfate reduction genes, down-regulated the expression of cysteine lyases, and up-regulated the catalase expression. Therefore, both sulfate reduction and biosynthesis contributed to the H2S production, and PAG inhibited both pathways. Finally, microbial pure culture experiment further verified the effectiveness of PAG in reducing H2S emission of composting. This work reveals an overlooked pathway for H2S production during composting, which fills the research gap in the role of the biogenesis pathway in composting H2S emission. This provides breakthrough guidance for future environmental management and pollution control at source.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingxiao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zihan Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zheng S, Dong J, Chen Q, Wu M, Zhu D, Cui L, Corvini PFX, Li HZ, Pan B. Elevated Toxicity and High-Risk Impacts of Small Polycyclic Aromatic Hydrocarbon Clusters on Microbes Compared to Large Clusters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:224-233. [PMID: 39723607 DOI: 10.1021/acs.est.4c10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes. Results revealed that over 95% of PAHs can form clusters in the aquatic environment, with smaller clusters more likely to form at lower concentrations and with fewer benzene rings. To quantify the toxic effects and understand underlying mechanisms, single-cell Raman-D2O was employed to link bacterial phenotypes with transcriptomic profiles. Bacteria exposed to smaller PAH clusters showed a 1%-10% reduction in metabolic activity, which was associated with a 1.8-2.9-fold increase in intracellular reactive oxygen species (ROS). Furthermore, when exposed to smaller PAH clusters, the expression of genes related to the ROS response and efflux pumps was upregulated by up to 6.33-fold and 4.97-fold, respectively, suggesting that smaller PAH clusters pose greater toxicity to microbes. These findings underscore the potentially overlooked risks of PAH clusters in environmental systems and deepen our understanding of the environmental fate and ecological risks of these contaminants.
Collapse
Affiliation(s)
- Shuyue Zheng
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Jihong Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Philippe Frangois-Xavier Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132, Muttenz, Switzerland
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| |
Collapse
|
7
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
8
|
Wang J, Wang X, Liu L, Wang X, Wang J, Zheng Y, Wang L, Pan X. Analyzing the Interaction between Tetrahymena pyriformis and Bacteria under Different Physicochemical Conditions When Infecting Guppy Using the eDNA Method. Animals (Basel) 2024; 14:2194. [PMID: 39123720 PMCID: PMC11310954 DOI: 10.3390/ani14152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In the aquaculture system of ornamental fish, the interaction between bacterial microbiota and ciliate protozoa can prevent or promote disease outbreaks, and different physicochemical conditions will affect the relationships between them. We investigated the interaction between bacterial microbiota and the parasite Tetrahymena pyriformis when infecting Poecilia reticulata (guppy) under different physicochemical conditions. The abundance of T. pyriformis in water, the relative abundance of bacterial species, and histopathological observation were studied or monitored using environmental DNA (eDNA) extraction technology, the qPCR method, and 16s rRNA sequencing, respectively. The morphological identification and phylogenetic analysis of T. pyriformis were carried out. The infected guppy tissue was also stained by the hematoxylin and eosin methods. The results showed: (1) the bacterial communities of water samples were mainly composed of species assigned to Proteobacteria and Bacteroidetes, and Tabrizicola and Puniceicoccaceae were positively correlated with fish mortality, T. pyriformis abundance, and temperature. (2) Arcicella and Methyloversatilis universalis with different correlations between ciliates appeared in different treatment groups, the result of which proved that environmental factors affected the interaction between bacteria and T. pyriformis. (3) Lower temperatures and a higher pH were more beneficial for preventing disease outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuming Pan
- Laboratory of Protozoology, Harbin Normal University, Harbin 150025, China; (J.W.); (X.W.); (L.L.); (X.W.); (J.W.); (Y.Z.); (L.W.)
| |
Collapse
|
9
|
Ahmed Mohamed T, Wei Z, Mohaseb M, Junqiu W, El Maghraby T, Chen X, Abdellah YAY, Mu D, El Kholy M, Pan C, Bello A, Zheng G, Mohamed Ahmed A, Ahmed M, Zhao Y. Performance of microbial inoculation and tricalcium phosphate on nitrogen retention and conversion: Core microorganisms and enzyme activity during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120601. [PMID: 38518488 DOI: 10.1016/j.jenvman.2024.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
The substantial release of NH3 during composting leads to nitrogen (N) losses and poses environmental hazards. Additives can mitigate nitrogen loss by adsorbing NH3/NH4, adjusting pH, and enhancing nitrification, thereby improving compost quality. Herein, we assessed the effects of combining bacterial inoculants (BI) (1.5%) with tricalcium phosphate (CA) (2.5%) on N retention, organic N conversion, bacterial biomass, functional genes, network patterns, and enzyme activity during kitchen waste (KW) composting. Results revealed that adding of 1.5%/2.5% (BI + CA) significantly (p < 0.05) improved ecological parameters, including pH (7.82), electrical conductivity (3.49 mS/cm), and N retention during composting. The bacterial network properties of CA (265 node) and BI + CA (341 node) exhibited a substantial niche overlap compared to CK (210 node). Additionally, treatments increased organic N and total N (TN) content while reducing NH4+-N by 65.42% (CA) and 77.56% (BI + CA) compared to the control (33%). The treatments, particularly BI + CA, significantly (p < 0.05) increased amino acid N, hydrolyzable unknown N (HUN), and amide N, while amino sugar N decreased due to bacterial consumption. Network analysis revealed that the combination expanded the core bacterial nodes and edges involved in organic N transformation. Key genes facilitating nitrogen mediation included nitrate reductase (nasC and nirA), nitrogenase (nifK and nifD), and hydroxylamine oxidase (hao). The structural equation model suggested that combined application (CA) and microbial inoculants enhance enzyme activity and bacterial interactions during composting, thereby improving nitrogen conversion and increasing the nutrient content of compost products.
Collapse
Affiliation(s)
- Taha Ahmed Mohamed
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mohamed Mohaseb
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Wu Junqiu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Taha El Maghraby
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Faculty of Public and Environmental Health, University of Khartoum, P.O. Box 205, 11111, Sudan
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mohamed El Kholy
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; School of Plant and Environmental Sciences, Virginia Technology, VA, 24061, USA
| | - Guangren Zheng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ahmed Mohamed Ahmed
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Marwa Ahmed
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Jiang Z, Zhang P, Wu Y, Wu X, Ni H, Lu Q, Zang S. Long-term surface composts application enhances saline-alkali soil carbon sequestration and increases bacterial community stability and complexity. ENVIRONMENTAL RESEARCH 2024; 240:117425. [PMID: 37875172 DOI: 10.1016/j.envres.2023.117425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Organic composts could remediate saline-alkali soils on agricultural land by amending soil micro-environment which is one of the main strategies for resourceful treatment and recycling of livestock manure. However, it was still unknown how long-term surface application of organic composts affects the microhabitat and bacterial community characteristics and assembly processes on the profile. We examined the features of the soil properties, bacterial community, and assembly models after 7-years composts application. Physicochemical indicators, enzyme activities, and bacterial diversity of the saline-alkali farmland were all enhanced by the surface composts application, particularly in the 0-20 cm. The network analysis showed that the surface application of composts significantly enhanced the robustness and topological characteristics of the bacterial community and that bacteria from Acidobacteriota were the keystone of the saline-alkali soils improvement. Composts also greatly increased the ecological niche of the bacterial community, while stochastic processes (mainly dispersal limitation) significantly shaped the bacterial community compared to the control. Structural equation modeling indicated that composts application promoted bacterial community succession, which in turn promoted elevated total organic carbon and improved saline-alkali soils properties. Overall, the study linked the ecological characteristics of soil microhabitats and bacterial communities during the restoration of saline-alkali soils by long-term surface application of composts, providing the management and remediation of saline-alkali agricultural soil with a theoretical foundation and technological support.
Collapse
Affiliation(s)
- Ziwei Jiang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Pengfei Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150040, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| |
Collapse
|