1
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Li K, Gao Y, Zhang Y, Zheng Y, Li G, Zhang L, Wu J, Shi Y, Huo M, Wang X. Establishment and application of standard analysis methods for microplastic samples: Urban sewage and sewage sludge as a source of microplastics in the environment. ENVIRONMENTAL RESEARCH 2025; 273:121237. [PMID: 40020867 DOI: 10.1016/j.envres.2025.121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The widespread use of plastics has led to the ubiquitous presence of microplastics (MPs) in the environment, posing risks to ecosystems and human health. Wastewater treatment plants (WWTPs), which often fail to completely remove MPs during treatment, have become a significant source of pollution. However, inconsistencies in sampling, pretreatment, and identification methods hinder comparative studies. This study developed a standardized method for MP analysis in WWTP water and sludge samples. Metal filters and ultrasound-assisted transfer improved desorption efficiency, while NaI flotation achieved nearly complete MP recovery. A two-step digestion method combining Fenton reagent and cellulase effectively removed organic matter (weight loss of 54.21 ± 2.00%) while maintaining 100% MP recovery. By tailoring the method to variables such as treatment processes, water volume, and pollution sources, a "gold standard" approach was designed to evaluate the environmental abundance of MPs in various WWTPs. Application of this method revealed MP concentrations of 2530-18,240 MP/L in influent and 650-1700 MP/L in effluent, with an estimated daily discharge of 1.42 × 108 MP/d into the environment. Primary sedimentation and skimming removed 57.07% of MPs, with secondary and advanced treatments enhancing removal. MPs primarily transferred to sludge, averaging 38.6-104.5 MP/g (dry weight). The most abundant MPs in influent were PU, PET, and PTFE, while PA, PU, and PET dominated in effluent. MPs smaller than 0.5 mm accounted for 98%, with regular particles increasing in effluent. This efficient method establishes a "gold standard" for MP analysis in WWTPs.
Collapse
Affiliation(s)
- Keqing Li
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yidi Gao
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Ying Zhang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yiyun Zheng
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Guanqiao Li
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Leilei Zhang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Jinghui Wu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Yan Shi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Xianze Wang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
3
|
Deng L, Yuan Y, Xi H, Wan C, Wu C. Treated wastewater disturb the distributions of microplastics in their receiving watersheds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124096. [PMID: 39798322 DOI: 10.1016/j.jenvman.2025.124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, threatening the security of aquatic organisms. Identifying the emission node and hot spot of MPs holds significant importance in the pollution control of MPs. Wastewater is widely recognized as sink and source of MPs, while the direct evidence is insufficient. To confirm the impact of the treated wastewater on the distribution of MPs in their receiving watersheds, MPs in surface river water and sediment samples collected around a typical industrial (petrochemical) and a municipal wastewater treatment plant (PWWTP and MWWTP) were identified. Results revealed that effluent from the PWWTP and water near the outfall of the MWWTP owned the most abundant MPs of 1280, and 723 items/L, respectively. Moreover, abundances of MPs in samples collected downstream of WWTPs (795 items/L in surface river water, 2142 items/kg in sediment for PWWTP, and 517 items/L, 1057 items/kg for MWWTP) consistently exceeded those of upstream (639 items/L, 926 items/kg for PWWTP, and 417 items/L, 700 items/kg for MWWTP). In addition, the discharge of treated petrochemical wastewater elevated the diversity of MPs while treated municipal wastewater elevated the relative content of narrow MPs or fibers in their downstream watersheds. In summary, treated wastewater do influence the distribution of MPs within their receiving watersheds.
Collapse
Affiliation(s)
- Liyan Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yue Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
5
|
Li K, He Q, Zhu J, Wang J, Sun C, Tan A, Zhao X, Peng Y, Huang C, Cai J, Wang P, Liu Z. Responses of microbial communities to the addition of different types of microplastics in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125220. [PMID: 39481521 DOI: 10.1016/j.envpol.2024.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
A 90-day soil incubation study was performed to investigate impacts of four types (PE, PP, PVC and PET) of microplastics (MPs) on the physicochemical properties, nutrient contents, enzyme activities, and microbial community structure and diversity of agricultural soils. Effects of the four microplastic types and addition ratios on the microbiology of the agricultural soils were significant. With the addition of MPs, there was a positive correlation between physicochemical properties, nutrients (AN, AP, AK) and enzyme activities (CAT, Urease, ACP, SUC), which were all decreased to some extent. Overall PE and PVC surfaces were the roughest and had the greatest impact on soil physicochemical properties, nutrients and enzyme activities. The changes in soil microbial α-diversity were not significant (P > 0.05), but, PP and PVC led to an increase in community diversity and abundance. Clearly, the four types of the MPs reduced the physicochemical properties, nutrient content, enzyme activity and microbial community, and thus significantly affected the microbiology of the farmland soils.
Collapse
Affiliation(s)
- Ke Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China
| | - Qihao He
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, China.
| | - Jieying Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chang Sun
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ao Tan
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoqi Zhao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuanhao Peng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, China
| | - Jingju Cai
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, China
| | - Ping Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, China
| | - Zhiming Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Yuelushan Laboratory, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, China; Ping Ding Shan Industrial Technology Research Institute, Henan Academy of Sciences, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
6
|
Wang Y, Shi Y, Fang L, Wang Z, Wu P, Yang X, Shi X, Pi K. Characteristics and aging of microplastics in waste activated sludge under persulfate and hydrothermal co-treatment: Impact of solid content and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124498. [PMID: 38972564 DOI: 10.1016/j.envpol.2024.124498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Activated persulfate and hydrothermal treatment (HTT) are often employed to treat waste activated sludge, which can improve the efficiency of subsequent sludge treatment and change the distribution of pollutants in the sludge. However, the impact of sludge solid content and temperature on the occurrence and aging of microplastics (MPs) during HTT remains poorly understood. This study investigated the effects of persulfate-HTT (SPS-HTT) co-treatment on the migration, occurrence, and aging of MPs in sludge with different solid contents (2% and 5% solid content). The results indicated that SPS-HTT co-treatment triggers both the disruption of sludge flocs and the melting deformation of MPs at high temperatures, leading to variations in the increasing trend of MP concentration in the solid-liquid phase at different solid contents. 5% solid content sludge showed a weak release of MPs from the solid phase. The proportion of fiber MPs first increased and then decreased with increasing temperature, while no significant changes were observed in the color and type of MPs. Higher temperature and solid content induced the melting deformation of MPs, exacerbated the aging of polypropylene MPs, and resulted in rough surfaces, higher carbonyl index, and variations in crystallinity. Moreover, the correlation between the carbonyl index and aging indicators increased with increasing solid content. The MP-derived dissolved organic matter under HTT primarily comprised soluble microbial by-products and humic acid-like substances. These findings underscore the significance of sludge solid content in affecting the migration and aging of MPs during HTT, and offer novel insights into the application of HTT to MP management in sludge treatment.
Collapse
Affiliation(s)
- Yan Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Yafei Shi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
| | - Longyu Fang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Zhipeng Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Pan Wu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China
| | - Xiong Yang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China
| | - Xiong Shi
- National Engineering Research Center for Ecological Environment of Yangtze River Economic Zone, China Three Gorges Corporation, Wuhan, 430014, China
| | - Kewu Pi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
7
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Hu B, Dai Y, Zhou H, Sun Y, Yu H, Dai Y, Wang M, Ergu D, Zhou P. Using artificial intelligence to rapidly identify microplastics pollution and predict microplastics environmental behaviors. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134865. [PMID: 38861902 DOI: 10.1016/j.jhazmat.2024.134865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
With the massive release of microplastics (MPs) into the environment, research related to MPs is advancing rapidly. Effective research methods are necessary to identify the chemical composition, shape, distribution, and environmental impacts of MPs. In recent years, artificial intelligence (AI)-driven machine learning methods have demonstrated excellent performance in analyzing MPs in soil and water. This review provides a comprehensive overview of machine learning methods for the prediction of MPs for various tasks, and discusses in detail the data source, data preprocessing, algorithm principle, and algorithm limitation of applied machine learning. In addition, this review discusses the limitation of current machine learning methods for various task analysis in MPs along with future prospect. Finally, this review finds research potential in future work in building large generalized MPs datasets, designing high-performance but low-computational-complexity algorithms, and evaluating model interpretability.
Collapse
Affiliation(s)
- Binbin Hu
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hai Zhou
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Ying Sun
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Hongfang Yu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yueyue Dai
- School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Wang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Daji Ergu
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Pan Zhou
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
9
|
Hossain S, Shukri ZNA, Waiho K, Ibrahim YS, Kamaruzzan AS, Rahim AIA, Draman AS, Wahab W, Khatoon H, Kasan NA. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32225-32245. [PMID: 38644425 DOI: 10.1007/s11356-024-33337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahidah Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
10
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
11
|
Peng M, Wu Q, Gao S, Liu Y, Zeng J, Ruan Y. Distribution and characteristics of microplastics in an urban river: The response to urban waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166638. [PMID: 37657545 DOI: 10.1016/j.scitotenv.2023.166638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The rivers have been proven to be potential sources and the major transport pathways of microplastic (MP) in natural aquatic eco-systems, yet there is an absence of understanding the provenances and distribution dynamics of MP in fluvial water body of urban regions. The present investigation aimed to characterize the distribution and accumulation of MPs in both surface water and riverine bed sediments in a typical urban river (Nanming River, southwest China), during the dry and wet seasons of 2021. MP were detected throughout the entire sample set, with average surface water abundances of 750 ± 53 n/m3 and 693.3 ± 40 n/m3 in dry and wet seasons, respectively, and 2250 ± 496.7 n/kg (dw) in surface sediments. Furthermore, the composition of 25 polymer types MPs were analyzed. The sediment of the Nanming River is a sink for MPs, recording their long-term accumulation. Multivariate statistical analysis-based results indicated that urban littering and agricultural input were the major contributors of non-point MP in the Nanming River, while the discharged effluent was another factor influencing the distribution of MPs in urban fluvial system. The average abundance of MPs was negatively correlated with purchase power parity (PPP), demonstrating that the poorly waste management results in a higher abundance of MPs in municipal river systems. The present study systematically characterized the distribution of MPs in medium-sized urban rivers systems in Southwest China. These findings can inform policy and management decisions to reduce MPs pollution in urban rivers and protect aquatic ecosystems.
Collapse
Affiliation(s)
- Meixue Peng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qixin Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China.
| | - Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Yongxue Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Jie Zeng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Yunjun Ruan
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|