1
|
Nie X, Wang P, Nie X, Wang J, Wang J, Li X, Tian Z, Guo H, Wang Y. Unraveling cadmium tolerance mechanisms in Betula platyphylla through a hierarchical gene regulatory network in hormone signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109878. [PMID: 40188532 DOI: 10.1016/j.plaphy.2025.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of Betula platyphylla (birch) under CdCl2 treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2 % of the predicted interactions between the first and second layers, along with 88.3 % of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of B. platyphylla to Cd stress.
Collapse
Affiliation(s)
- Xianguang Nie
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Pengyu Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xianhui Nie
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingxin Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingwen Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaofu Li
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Tian
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiyan Guo
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yucheng Wang
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
2
|
Marques DN, Thiengo CC, Azevedo RA. Phytochelatins and Cadmium Mitigation: Harnessing Genetic Avenues for Plant Functional Manipulation. Int J Mol Sci 2025; 26:4767. [PMID: 40429908 PMCID: PMC12112059 DOI: 10.3390/ijms26104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Among the highly toxic heavy metals, cadmium (Cd) is highlighted as a persistent environmental pollutant, posing serious threats to plants and broader ecological systems. Phytochelatins (PCs), which are synthesized by phytochelatin synthase (PCS), are peptides that play a central role in Cd mitigation through metal chelation and vacuolar sequestration upon formation of Cd-PC complexes. PC synthesis interacts with other cellular mechanisms to shape detoxification outcomes, broadening the functional scope of PCs beyond classical stress responses. Plant Cd-related processes have has been extensively investigated within this context. This perspective article presents key highlights of the panorama concerning strategies targeting the PC pathway and PC synthesis to manipulate Cd-exposed plants. It discusses multiple advances on the topic related to genetic manipulation, including the use of mutants and transgenics, which also covers gene overexpression, PCS-deficient and PCS-overexpressing plants, and synthetic PC analogs. A complementary bibliometric analysis reveals emerging trends and reinforces the need for interdisciplinary integration and precision in genetic engineering. Future directions include the design of multigene circuits and grafting-based innovations to optimize Cd sequestration and regulate its accumulation in plant tissues, supporting both phytoremediation efforts and food safety in contaminated agricultural environments.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo 13418-900, SP, Brazil
| | - Cássio Carlette Thiengo
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo 13418-900, SP, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo 13418-900, SP, Brazil
| |
Collapse
|
3
|
Xu C, Sun L, Zhang LD, Guo ZJ, Wang JC, Zhuang LH, Ma DN, Song LY, Li J, Ding QS, Tang HC, Zheng HL. Machine learning based prediction by PlantCdMiner and experimental validation of cadmium-responsive genes in plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138582. [PMID: 40378751 DOI: 10.1016/j.jhazmat.2025.138582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Plants have evolved diverse adaptive mechanisms to sense and respond to environmental stimuli such as cadmium stress. The regulation of gene expression plays a critical role in plant responses to abiotic stress. However, homologous genes from different plant species or even different genotypes within the same species often show divergent responses to stress, and sequence homology does not necessarily imply functional similarity. Therefore, current homology alignment approaches to predicting transcriptional response to the specific stress have inherent limitations. In this study, we trained supervised classification models using the Random Forest algorithm to predict cadmium-responsive genes based on gene sequence features in Arabidopsis thaliana, Avicennia marina, Hordeum vulgare, and Nicotiana tabacum. Our models successfully predicted transcriptional response to cadmium stress both within and across species. The results suggested that transcriptome data from well-studied species can be used to predict cadmium-responsive genes in other species lacking such data. Cis-regulatory elements analysis further revealed that MYB TFs play essential roles in cadmium stress responses. Additionally, we experimentally confirmed that the MYB TF Am06526 activates the expression of AmPCR2 using yeast one-hybrid and dual-luciferase reporter assays. Finally, we developed PlantCdMiner (https://jasonxu.shinyapps.io/PlantCdMiner/), a web-based tool that enables users to predict cadmium-responsive genes and visualize cis-regulatory elements based on genomic features using machine learning.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 03000, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China.
| |
Collapse
|
4
|
Lv G, Li F, Chen J, Wu Z, Wang T, Ding H, Zhang Z, Qiu F. Genome-Wide Identification and Phylogenetic Characterization of the FTIP Gene Family in Maize ( Zea mays). Genes (Basel) 2025; 16:539. [PMID: 40428361 PMCID: PMC12111101 DOI: 10.3390/genes16050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
The maize FT-interacting protein (FTIP) gene family represents a group of multiple C2 domain and transmembrane proteins (MCTPs), characterized by their unique structural motifs and membrane-spanning regions., plays crucial roles in intercellular communication and stress responses. Here, we systematically characterized 27 ZmFTIP genes unevenly distributed across 10 maize chromosomes. Phylogenetic analysis with rice, soybean, and Arabidopsis homologs revealed five evolutionary clades with monocot-specific conservation patterns. Promoter cis-element profiling identified hormone-responsive (ABA, JA, auxin) and stress-related motifs, corroborated by differential expression under abiotic stresses and phytohormone treatments. Notably, ZmFTIP18 and ZmFTIP25 showed sustained upregulation under cadmium exposure, while ZmFTIP13 exhibited downregulation. Synteny analysis demonstrated strong conservation with monocot FTIPs, suggesting ancient evolutionary origins. This comprehensive study provides foundational insights into ZmFTIP functional diversification and potential biotechnological applications.
Collapse
Affiliation(s)
- Guihua Lv
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (H.D.)
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China; (F.L.); (J.C.); (Z.W.); (T.W.)
| | - Fangjian Li
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China; (F.L.); (J.C.); (Z.W.); (T.W.)
| | - Jianjian Chen
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China; (F.L.); (J.C.); (Z.W.); (T.W.)
| | - Zhenxing Wu
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China; (F.L.); (J.C.); (Z.W.); (T.W.)
| | - Tingzhen Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China; (F.L.); (J.C.); (Z.W.); (T.W.)
| | - Haiping Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (H.D.)
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhiming Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fazhan Qiu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (H.D.)
| |
Collapse
|
5
|
Kumar RS, Datta T, Sinha H, Trivedi PK. MIR408-encoded peptide, miPEP408, regulates cadmium stress response through sulfur assimilation pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138420. [PMID: 40311427 DOI: 10.1016/j.jhazmat.2025.138420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Small peptides encoded by pri-miRNAs (miPEPs), have been identified as significant plant growth and development regulators. However, their roles in plant-environment interactions and heavy metal stress response remain largely unexplored. Here, we demonstrate that Arabidopsis MIR408-encoded peptide (miPEP408) plays a significant role in cadmium (Cd) stress response by modulating the sulfur assimilation pathway. Using a combination of exogenous synthetic peptide assays, CRISPR/Cas9-mediated knockout mutants (miPEP408CR), and overexpression lines (miPEP408OX), we analyzed phenotypic and molecular levels to elucidate the function of miPEP408 under Cd stress. Our results suggest that miPEP408 regulates miR408 expression and its targets in response to Cd exposure. Plants treated with exogenous miPEP408 or overexpressing miPEP408 exhibited reduced glutathione (GSH) levels, suppression of sulfur assimilation pathway genes, and heightened sensitivity to Cd. miPEP408CR plants showed enhanced GSH levels, upregulation of sulfur assimilation genes, and improved Cd detoxification. Furthermore, miPEP408 influenced the expression of Cd transporters and Cd accumulation in plants. In conclusion, this study establishes miPEP408 as a key regulator of Cd stress response in Arabidopsis, functioning through modulation of the sulfur assimilation pathway and metal transporter gene expression. These findings underscore the indispensable role of miPEPs in enhancing plant resilience to heavy metal stress.
Collapse
Affiliation(s)
- Ravi Shankar Kumar
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Hiteshwari Sinha
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
6
|
Zhu C, Chen Q, Guo L, Deng S, Zhang W, Cheng S, Cong X, Xu F. Genome-wide identification of MYB gene family and exploration of selenium metabolism-related candidates in paper mulberry (Broussonetia papyrifera). PLANT CELL REPORTS 2025; 44:84. [PMID: 40128436 DOI: 10.1007/s00299-025-03468-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Genome-wide identified 144 MYB family members in B. papyrifera. Integrated correlation analysis and target gene-binding motif prediction indicate that BpMYB135 is vital in regulating selenium metabolism. Selenium is an essential micronutrient for maintaining the health of humans and animals. Broussonetia papyrifera, a forage tree with high nutritional value, exhibits a remarkable ability to accumulate selenium. Although previous studies have preliminarily unfolded the molecular mechanisms underlying selenium accumulation, the roles of transcription factors in regulating selenium uptake and transformation remain poorly understood. This study used various strategies including bioinformatic, physiological, and molecular experiments to explore candidates regarding Se metabolism. Briefly, 144 MYB transcription factor family members were identified and classified into four types (R1, R2R3, R1R2R3, and R4), with phylogenetic analysis further dividing them into 58 subfamilies. The promoters of those BpMYBs contain numerous cis-acting elements associated with plant growth, development, and stress response. qRT-PCR assay confirmed 8 of 15 BpMYBs exhibit a remarkable correlation with selenium content at the threshold absolute value of 0.5. Additionally, foliar application of exogenous abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) reveals different response patterns of BpMYBs. The subcellular localization assay simultaneously verifies that the candidate BpMYB135 functions within the nucleus. Overall, this funding highlights the potential regulatory mechanisms of selenium metabolism in B. papyrifera, providing a foundation for improving its forage value through genetic modification.
Collapse
Affiliation(s)
- Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Tan J, Zhang L, Liu C, Hong Z, Wu X, Zhang Y, Fahad M, Shen Y, Bian J, He H, Wu D, Shu Q, Bao J, Wu L. UCL23 hierarchically regulated by WRKY51-miR528 mediates cadmium uptake, tolerance, and accumulation in rice. Cell Rep 2025; 44:115336. [PMID: 39985767 DOI: 10.1016/j.celrep.2025.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
In humans, cadmium (Cd) toxicity caused by contaminated environments is associated with numerous chronic diseases. Breeding rice with low Cd accumulation is now deemed critical for sustainable agriculture development. Here, we elucidate the crucial functions of UCLACYANIN 23 (UCL23), a small copper protein, in Cd absorption, tolerance, and accumulation through modulation of reactive oxygen signals in rice. Additionally, we demonstrate that WRKY51 binds to promoters of UCL23 and miR528, a post-transcriptional regulator of UCL23, thereby contributing to Cd regulation in a dual-modulatory manner. Furthermore, we show that the natural variation of UCL23 is important for the differential accumulation of Cd in rice grains. Finally, we reveal that Indica rice harboring the major Japonica haplotype of UCL23 significantly reduces Cd uptake in roots and Cd accumulation in grains. Together, our study not only reveals a regulatory cascade in Cd regulation but also provides valuable resources for breeding low-Cd rice cultivars.
Collapse
Affiliation(s)
- Jingai Tan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Chuanjia Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zheyuan Hong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dezhi Wu
- Yuelushan Laboratory, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyao Shu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jinsong Bao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
8
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 PMCID: PMC11814136 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
9
|
Zhou X, Sun Z, Huang Y, He D, Lu L, Wei M, Lin S, Luo W, Liao X, Jin S, Guo M, Hao L, Jiang Z. WRKY45 positively regulates salinity and osmotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109408. [PMID: 39721186 DOI: 10.1016/j.plaphy.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis. However, the involvement of WRKY45 in salinity and osmotic stress responses is unclear. Here, we report that WRKY45 plays a vital role in responding to salinity and osmotic stress. NaCl and sorbitol treatments upregulate WRKY45 expression. Furthermore, the overexpression of WRKY45 (WRKY45-OXs) may enhance the tolerance of Arabidopsis to salinity and osmotic stress. Moreover, the root length, fresh weight, chlorophyll, and proline content were significantly higher in WRKY45-OXs than in the wide type (WT) Col-0 plants after salt or PEG treatment, whereas malondialdehyde and reactive oxygen species (ROS) levels were significantly lower than in the WT plants. Correspondingly, the overexpression of WRKY45 modulated the expression of stress-responsive genes. Dual luciferase assay and electrophoretic mobility shift assay further confirmed that WRKY45 can activate the promoter of RD29A by directly binding to specific W-box cis-acting elements. Overall, our experimental evidence suggesting that WRKY45 mainly acts as a key regulator coordinating the response to high salinity and osmotic stress through mechanisms dependent on ABA signaling along with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| | - Zhaofei Sun
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Yuanzhi Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Dan He
- Center for Quantitative Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lu Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Mengting Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Shuangmei Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Wenxi Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Xiaozhen Liao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Songsong Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Manyuan Guo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Lingyun Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2025; 48:1705-1716. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Chang X, Li J, Wei S, Ying J, Nevill P, Qi Z, Lu Q, You Z. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of Alisma orientale to cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177401. [PMID: 39521082 DOI: 10.1016/j.scitotenv.2024.177401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) pollution poses a serious challenge to the quality and safe utilization of traditional Chinese medicine plants as well as human health. In this study, seedlings of the medicinal plant species Alisma orientale were subjected to different levels of Cd stress for 7 days to investigate the effects of Cd stress on its growth, physiological response, and transcriptome profiling. The results showed that under different Cd stress levels, the growth of A. orientale displayed an inverted U-shaped dose response curve as low-dose stimulation and high-dose inhibition. Cd was mainly enriched in roots in the high concentration treatment, and Cd content reached maximum under 200-μM Cd stress. Cd stress-induced indicators including H2O2 (14.1-228.8 % in leaves; 29.7-131.7 % in roots) and MDA (22.0-161.1 % in leaves; 30.0-201.1 % in roots) showed different degree of increase, except under 200-μM Cd stress, which had a slight decrease. Antioxidant enzyme system (SOD, POD and CAT) and nonenzymatic substances (SS, SP, total flavonoid and total polyphenols) played a key role to mitigate Cd toxic effects. Transcriptome analysis revealed 26,442 significantly differentially expressed genes, and plant-pathogen interactions and phenylpropanoid biosynthesis were identified as two key pathways. Through WGCNA joint analysis, the transcription factor genes R2R3-MYB (AoMYB12) and WRKY (AoWRKY5 and AoWRKY6) were identified as hub regulators of A. orientale in response to Cd stress. Our study provides experimental data on the effects of Cd stress on A. orientale growth and Cd accumulation in different plant parts, and investigated the transcriptomic and physio-biochemical features, advancing our understanding of the response and detoxification mechanisms of plants under Cd stress.
Collapse
Affiliation(s)
- Xiao Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengnan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianan Ying
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Paul Nevill
- Minesite Biodiversity Monitoring with eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qixiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhengying You
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Lu Y, Li T, Li R, Zhang P, Li X, Bai Z, Wu J. Role of SbNRT1.1B in cadmium accumulation is attributed to nitrate uptake and glutathione-dependent phytochelatins biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135655. [PMID: 39217923 DOI: 10.1016/j.jhazmat.2024.135655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phytoremediation of cadmium (Cd)-polluted soil by using sweet sorghum displays a tremendous potential as it is a fast-growing, high biomass and Cd tolerant energy plant. Previous study has demonstrated SbNRT1.1B expression change is in accordance with enhanced Cd accumulation by external nitrate supply in sweet sorghum. Nevertheless, underlying mechanism of SbNRT1.1B response to Cd stress is still elusive. SbNRT1.1B exhibited a positive response to Cd stress in sweet sorghum. Overexpressing SbNRT1.1B increased primary root length, shoot fresh weight, nitrate and chlorophyll concentrations compared with Col-0 under Cd stress, while complementary SbNRT1.1B rescued these decreased values in mutant chl1-5. Cd concentrations in overexpressing SbNRT1.1B, complementary SbNRT1.1B and Col-0 lines were 3.2-4.1, 2.5-3.1 and 1.2-2.1 folds of that in chl1-5. Consistent with Cd concentrations, non-protein thiol (NPT), reduced glutathione (GSH) and phytochelatins (PCs) concentrations as well as the related genes expression levels showed the same trends under Cd stress. GSH biosynthesis inhibitor failed to reverse the patterns of GSH-dependent PCs concentrations changes in different lines, suggesting that SbNRT1.1B plays an upstream role in GSH-dependent PCs biosynthesis under Cd treatment. Altogether, SbNRT1.1B enhances nitrate concentrations contributing to increased chlorophyll concentrations and GSH-dependent PCs metabolites biosynthesis, thereby improving growth and Cd concentrations in plants.
Collapse
Affiliation(s)
- Yuan Lu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ting Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ruijuan Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Pan Zhang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - XiaoXiao Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
14
|
Li F, Mai C, Liu Y, Deng Y, Wu L, Zheng X, He H, Huang Y, Luo Z, Wang J. Soybean PHR1-regulated low phosphorus-responsive GmRALF22 promotes phosphate uptake by stimulating the expression of GmPTs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112211. [PMID: 39122156 DOI: 10.1016/j.plantsci.2024.112211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Rapid alkalisation factors (RALFs) play crucial roles in plant responses to nutrient stress. However, the functions of Glycine max RALFs (GmRALFs) under low P (LP) stress remain elusive. In this study, we first identified 27 GmRALFs in soybean and then revealed that, under LP conditions, GmRALF10, GmRALF11, and GmRALF22 were induced in both roots and leaves, whereas GmRALF5, GmRALF6, and GmRALF25 were upregulated in leaves. Furthermore, GmRALF22 was found to be the target gene of the transcription factor GmPHR1, which binds to the P1BS cis-element in the promoter of GmRALF22 via electrophoretic mobility shift assay and dual-luciferase experiments. Colonisation with Bacillus subtilis which delivers GmRALF22, increases the expression of the high-affinity phosphate (Pi) transporter genes GmPT2, GmPT11, GmPT13, and GmPT14, thus increasing the total amount of dry matter and soluble Pi in soybeans. RNA sequencing revealed that GmRALF22 alleviates LP stress by regulating the expression of jasmonic acid- (JA-), salicylic acid- (SA-), and immune-related genes. Finally, we verified that GmRALF22 was dependent on FERONIA (FER) to promote Arabidopsis primary root growth under LP conditions. In summary, the GmPHR1-GmRALF22 module positively regulates soybean tolerance to LP.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Wu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huijing He
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yilin Huang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxi Luo
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
15
|
Li YR, Cai W, Zhang YX, Zhang NX, Huang QL, Lu YT, Yuan TT. A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis. Int J Mol Sci 2024; 25:11455. [PMID: 39519008 PMCID: PMC11546484 DOI: 10.3390/ijms252111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Ying-Rui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Ya-Xuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning-Xin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao-Ling Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Hu S, Chen J, Wang H, Ji E, Su X, Zhu M, Xiang X, Gong L, Zhou Q, Xiao X, Wu G, Zha H. The transcription factor OsNAC5 regulates cadmium accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117102. [PMID: 39332196 DOI: 10.1016/j.ecoenv.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal that threatens human health through the consumption of contaminated rice. To mitigate Cd accumulation in rice grains, it is crucial to reduce Cd uptake. Nevertheless, the transcriptional mechanisms governing Cd uptake in rice remain largely unknown. This research identifies the transcription factor OsNAC5 in Oryza sativa as a positive regulator of the Cd transporter gene OsNRAMP1, thereby influencing Cd uptake. OsNAC5 is predominantly expressed in the roots, resides in the nucleus, and is upregulated by Cd-induced hydrogen peroxide (H2O2). Knocking out OsNAC5 results in lower Cd concentrations in both shoots and roots and heightens sensitivity to Cd. The expression of OsNRAMP1, enhanced by Cd stress, is dependent on OsNAC5. OsNAC5 binds to "CATGTG" motifs in the OsNRAMP1 promoter, activating its expression. The loss of OsNAC5 function leads to reduced Cd accumulation in rice grains. Our findings provide insights into the transcriptional regulation of Cd stress response in rice and propose biotechnological strategies to lower Cd uptake in crops.
Collapse
Affiliation(s)
- Shubao Hu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Jinfen Chen
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Hui Wang
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Su
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Muyao Zhu
- College of Resources and Environment, Anhui Science and Technology University, Bengbu, China
| | - Xiaoyan Xiang
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Li Gong
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xin Xiao
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - Ganlin Wu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China.
| | - Hannie Zha
- College of Computer and Information, Anqing Normal University, Anqing 246003, China.
| |
Collapse
|
17
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
18
|
Wei TL, Wang ZH, Pei MS, Liu HN, Guo DL. Mechanisms of Cadmium stress response in watermelon: Insights from physiological, transcriptomic, and metabolic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109017. [PMID: 39121518 DOI: 10.1016/j.plaphy.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cadmium (Cd) contamination of soil may lead to Cd stress for plants, which significantly hinders plant growth and development, posing a risk to human health through the consumption of Cd-contaminated foods. Watermelon (Citrullus lanatus), a widely consumed fruit, is particularly affected by Cd stress globally, yet the mechanisms underlying its response are not well understood. Here, we subjected watermelon seedlings to simulated Cd stress treatment and explored the physiological, transcriptomic, and metabolic response. Our findings revealed that Cd stress treatment led to increased accumulation of reactive oxygen species (ROS) in watermelon leaves. Transcriptome sequencing unveiled a multitude of osmotic and oxidative stress-responsive genes, including peroxidase (POD), MYB, voltage-dependent anion channel (SLAC1), and ABC transporter. KEGG enrichment analysis highlighted the predominant enrichment of Cd stress-responsive genes in pathways such as glutathione (GSH) metabolism, MAPK signaling, and biosynthesis of secondary metabolites. Within the GSH metabolism pathway, several glutathione S-transferase (GST) genes were up-regulated, alongside phytochelatin synthetase (PCS) genes involved in phytochelatin synthesis. In the MAPK signaling pathway, genes associated with ABA and ethylene signal transduction showed up-regulation following Cd stress. Metabolomic analysis demonstrated that Cd stress enhanced the production of amino acids, phenolamines, and esters. Overall, our study elucidates that watermelon responds to Cd stress by activating its antioxidant system, GSH metabolism pathway, MAPK signal pathway, and biosynthesis of key metabolites. These findings offer valuable insights for the remediation of heavy metal pollution in soil affecting plant life.
Collapse
Affiliation(s)
- Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Ze-Hang Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
19
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
20
|
Li L, Chen Q, Cui S, Ishfaq M, Zhou L, Zhou X, Liu Y, Peng Y, Yu Y, Wu W. Exogenous Application of Amino Acids Alleviates Toxicity in Two Chinese Cabbage Cultivars by Modulating Cadmium Distribution and Reducing Its Translocation. Int J Mol Sci 2024; 25:8478. [PMID: 39126047 PMCID: PMC11313598 DOI: 10.3390/ijms25158478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Xue Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yanli Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 523758, China;
| | - Yifa Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
21
|
Ping X, Ye Q, Yan M, Wang J, Zhang T, Chen S, Siddique KHM, Cowling WA, Li J, Liu L. Overexpression of BnaA10.WRKY75 Decreases Cadmium and Salt Tolerance via Increasing ROS Accumulation in Arabidopsis and Brassica napus L. Int J Mol Sci 2024; 25:8002. [PMID: 39063244 PMCID: PMC11276826 DOI: 10.3390/ijms25148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Taiyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Jia H, Zhu Z, Zhan J, Luo Y, Yin Z, Wang Z, Yan X, Shao H, Song Z. NtARF11 positively regulates cadmium tolerance in tobacco by inhibiting expression of the nitrate transporter NtNRT1.1. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134719. [PMID: 38797073 DOI: 10.1016/j.jhazmat.2024.134719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Heavy metal cadmium (Cd) is widespread in contaminated soil and an important factor limiting plant growth. NO3- (nitrate) affects Cd uptake and thus changes Cd tolerance in plants; however, the underlying molecular regulatory mechanisms have not yet been elucidated. Here, we analyzed a novel gene, NtARF11 (auxin response factor), which regulates Cd tolerance in tobacco via the NO3- uptake pathway, through experiments with NtARF11-knockout and NtARF11-overexpression transgenic tobacco lines. NtARF11 was highly expressed under Cd stress in tobacco plants. Under Cd stress, overexpression of NtARF11 enhanced Cd tolerance in tobacco compared to that in wild-type tobacco, as shown by the low Cd concentration, high chlorophyll concentration, and low accumulation of reactive oxygen species in NtARF11-overexpressing tobacco. Moreover, low NO3- concentrations were observed in NtARF11-overexpressing tobacco plants. Further analyses revealed direct binding of NtARF11 to the promoter of the nitrate transporter NtNRT1.1, thereby negatively regulating its expression in tobacco. Notably, NtNRT1.1 knockout reduced NO3- uptake, which resulted in low Cd concentrations in tobacco. Altogether, these results demonstrate that the NtARF11-NtNRT1.1 module functions as a positive regulator of Cd tolerance by reducing the Cd uptake in tobacco, providing new insights for improving Cd tolerance of plants through genetic engineering.
Collapse
Affiliation(s)
- Hongfang Jia
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zitong Zhu
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiawei Zhan
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Luo
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhuoran Yin
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Shao
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhaopeng Song
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
23
|
Zhang G, Sun Y, Ullah N, Kasote D, Zhu L, Liu H, Xu L. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108671. [PMID: 38703500 DOI: 10.1016/j.plaphy.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.
Collapse
Affiliation(s)
- Guilian Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuee Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Deepak Kasote
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Longyi Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Liu
- Institute of Agriculture, The University of Western Australia, WA, 6009, Australia
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
24
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
25
|
Xu Y, Li Y, Li Y, Zhai C, Zhang K. Transcriptome Analysis Reveals the Stress Tolerance Mechanisms of Cadmium in Zoysia japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:3833. [PMID: 38005730 PMCID: PMC10674853 DOI: 10.3390/plants12223833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a severe heavy metal pollutant globally. Zoysia japonica is an important perennial warm-season turf grass that potentially plays a role in phytoremediation in Cd-polluted soil areas; however, the molecular mechanisms underlying its Cd stress response are unknown. To further investigate the early gene response pattern in Z. japonica under Cd stress, plant leaves were harvested 0, 6, 12, and 24 h after Cd stress (400 μM CdCl2) treatment and used for a time-course RNA-sequencing analysis. Twelve cDNA libraries were constructed and sequenced, and high-quality data were obtained, whose mapped rates were all higher than 94%, and more than 601 million bp of sequence were generated. A total of 5321, 6526, and 4016 differentially expressed genes were identified 6, 12, and 24 h after Cd stress treatment, respectively. A total of 1660 genes were differentially expressed at the three time points, and their gene expression profiles over time were elucidated. Based on the analysis of these genes, the important mechanisms for the Cd stress response in Z. japonica were identified. Specific genes participating in glutathione metabolism, plant hormone signal and transduction, members of protein processing in the endoplasmic reticulum, transporter proteins, transcription factors, and carbohydrate metabolism pathways were further analyzed in detail. These genes may contribute to the improvement of Cd tolerance in Z. japonica. In addition, some candidate genes were highlighted for future studies on Cd stress resistance in Z. japonica and other plants. Our results illustrate the early gene expression response of Z. japonica leaves to Cd and provide some new understanding of the molecular mechanisms of Cd stress in Zosia and Gramineae species.
Collapse
Affiliation(s)
- Yi Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yonglong Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Yan Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Chenyuan Zhai
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| |
Collapse
|