1
|
Wang Z, Du R, Wang C, Li X, Yue L, White JC, Cao X, Xing B. Fate and Toxicity of Carbon Black to Phytoplankton in Natural Lakes: Insight into the Role of Phototransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7699-7711. [PMID: 40211440 DOI: 10.1021/acs.est.4c13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Concern over the contamination of freshwater ecosystems with carbon black (CB) is increasing. Here, the toxicity of CB to phytoplankton (Chlorella pyrenoidosa) was evaluated; upon exposure, the median effective concentration for 72 h was 23.4 mg/L. CB underwent significant photooxidation during 15 days of light irradiation, although phototransformation was generally completed by day 7. Algal growth inhibition induced by phototransformed CB (TCB) at 1 mg/L was 64.1% greater than that induced by parent CB. Mechanistically, 1) phototransformation triggered the release of highly toxic byproducts, which inhibited algal growth by 18.9%; 2) metabolomic results demonstrate that the suppression of carbon and nitrogen assimilation in algal cells induced by TCB was 13.2-53.7% greater than that induced by CB; 3) TCB exhibited reactive oxygen species production ability, which triggered more significant algal membrane damage. A full-factorial experiment (26+1 runs) showed that the combined effect of temperature and suspended mineral particles, as well as electrical conductivity, was the primary environmental factor that mediated CB and TCB toxicity, respectively. The predicted toxicity of CB and TCB in Taihu Lake exhibited significant regional distribution, and TCB posed a greater environmental risk in aquatic ecosystems than CB. These findings highlight the importance of particulate contaminant transformation and environmental factors when evaluating their environmental risk.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruojin Du
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Wu T, Jiang J, Yang Y, Zhang J, Dai Z, Tao H. Toxicity mechanism of metal-organic framework HKUST-1 and its carbonized product to Tetradesmus obliquus: Physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110130. [PMID: 39848481 DOI: 10.1016/j.cbpc.2025.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging materials with unique structures and properties, which have been widely used in many fields due to their various advantages. However, compared with its popular application research, the ecological safety of MOFs has rarely been reported. In this paper, a biological model, the common freshwater green algae Tetradesmus obliquus (T. obliquus) was used to study the effects of the copper-based MOF HKUST-1 and its carbonation product DHKUST-1 on the physiology and transcription level of the algae. A suite of advanced material characterization techniques has been utilized to multidimensionally reveal the physicochemical properties of HKUST-1 and its carbonation product. Notably, DHKUST-1 exhibit higher stability than HKUST-1 in aqueous environments, with lower ion release. During a 96-h exposure experiment, relevant indicators such as algae density, chlorophyll-a content and antioxidant enzyme activities were measured. Additionally, an intriguing IBR model was employed to comprehensively assess the toxicity of HKUST-1 and DHKUST-1 on the antioxidant system of T. obliquus. Furthermore, an in-depth analysis was conducted on the differential gene expression changes in T. obliquus under 10 mg/L HKUST-1 stress, exploring the impact on various pathways within algal cells. Briefly, the toxicity mechanism of HKUST-1 on T. obliquus is multi-involved. The findings of this study are expected to provide important basic data and references for the evaluation of the ecological safety of MOFs.
Collapse
Affiliation(s)
- Tongtong Wu
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiahui Jiang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Yi Yang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiehe Zhang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Zehong Dai
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Haisheng Tao
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Qi Q, Liu Z, Chen X, Yu J, Li X, Wang R, Liu Y, Chen J. Promoted electrochemical performance by MOF on MOF composite catalyst of microbial fuel cell: CuCo-MOF@ZIF-8 and the comparison between two-step hydrothermal method and dual-solution method. Biosens Bioelectron 2024; 264:116693. [PMID: 39167887 DOI: 10.1016/j.bios.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xin Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
4
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Cao X, Fan G, Luo J, Zhang L, Wu S, Yao Y, Xu KQ. High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135461. [PMID: 39154471 DOI: 10.1016/j.jhazmat.2024.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH2-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH2-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH2-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O2-) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.
Collapse
Affiliation(s)
- Xingfeng Cao
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co., Ltd., 350002 Fujian, China
| | - Ling Zhang
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Shiyun Wu
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Yixin Yao
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Kai-Qin Xu
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China; College of Environment and Safety Engineering, Fuzhou University, 350116 Fujian, China.
| |
Collapse
|
6
|
Ji W, Ma J, Zheng Z, Al-Herrawy AZ, Xie B, Wu D. Algae blooms with resistance in fresh water: Potential interplay between Microcystis and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173528. [PMID: 38802023 DOI: 10.1016/j.scitotenv.2024.173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Microcystis, a type of cyanobacteria known for producing microcystins (MCs), is experiencing a global increase in blooms. They have been recently recognized as potential contributors to the widespread of antibiotic resistance genes (ARGs). By reviewing approximately 150 pieces of recent studies, a hypothesis has been formulated suggesting that significant fluctuations in MCs concentrations and microbial community structure during Microcystis blooms could influence the dynamics of waterborne ARGs. Among all MCs, microcystin-LR (MC-LR) is the most widely distributed worldwide, notably abundant in reservoirs during summer. MCs inhibit protein phosphatases or increase reactive oxygen species (ROS), inducing oxidative stresses, enhancing membrane permeability, and causing DNA damage. This further enhances selective pressures and horizontal gene transfer (HGT) chances of ARGs. The mechanisms by which Microcystis regulates ARG dissemination have been systematically organized for the first time, focusing on the secretion of MCs and the alterations of bacterial community structure. However, several knowledge gaps remain, particularly concerning how MCs interfere with the electron transport chain and how Microcystis facilitates HGT of ARGs. Concurrently, the predominance of Microcystis forming the algal microbial aggregates is considered a hotspot for preserving and transferring ARGs. Yet, Microcystis can deplete the nutrients from other taxa within these aggregates, thereby reducing the density of ARG-carrying bacteria. Therefore, further studies are needed to explore the 'symbiotic - competitive' relationships between Microcystis and ARG-hosting bacteria under varied nutrient conditions. Addressing these knowledge gaps is crucial to understand the impacts of the algal aggregates on dynamics of waterborne antibiotic resistome, and underscores the need for effective control of Microcystis to curb the spread of antibiotic resistance. Constructed wetlands and photocatalysis represent advantageous strategies for halting the spread of ARGs from the perspective of Microcystis blooms, as they can effectively control Microcystis and MCs while maintaining the stability of aquatic ecosystem.
Collapse
Affiliation(s)
- Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Jingkai Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Ahmad Z Al-Herrawy
- Water Pollution Research Department, National Research Centre, Giza, Egypt
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
7
|
Zhang X, Zhang B, Shen Y, Li Z, Hou Y, Liu F, Tong M. Simultaneous inactivation of Microcystis aeruginosa and degradation of microcystin-LR in water by activation of periodate with sunlight. WATER RESEARCH 2024; 260:121948. [PMID: 38906082 DOI: 10.1016/j.watres.2024.121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Harmful algal blooms pose tremendous threats to ecological safety and human health. In this study, simulated solar light (SSL) irradiation was used to activate periodate (PI) for the inactivation of Microcystis aeruginosa and degradation of microcystin-LR (MC-LR). We found that PI-SSL system could effectively inactivate 5 × 106 cells·mL-1 algal cells below the limit of detection within 180 min. ·OH and iodine (IO3· and IO4·) radicals generated in PI-SSL system could rupture cell membranes, releasing intracellular substances including MC-LR into the reaction system. However, the released MC-LR could be degraded into non-toxic small molecules via hydroxylation and ring cleavage processes in PI-SSL system, reducing their environmental risks. High algae inactivation performance of PI-SSL system in solution with a wide pH range (3-9), with the coexisting anions (Cl-, NO3- and SO42-) and the copresence of natural organic matters (humic acid and fulvic acid), real water (lake water and river water), as well as in continuous-flow reactor (14 h) were also achieved. In addition, under natural sunlight irradiation, effective algae inactivation could also be achieved in an enlarged reactor (1 L). Overall, our study showed that PI-SSL system could avoid the inference by the background substances and could be employed as a feasible technique to treat algal bloom water.
Collapse
Affiliation(s)
- Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China
| | - Baoyu Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China
| | - Yutao Shen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
| |
Collapse
|
8
|
Gao X, Gao Y, Cao H, Zhang J. Eco-Friendly Sustainable and Responsive High-Performance Benzotriazole-Metal Organic Frameworks/Silica Composite Coating with Active/Passive Corrosion Protection on Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7639-7652. [PMID: 38552104 DOI: 10.1021/acs.langmuir.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Coatings with only passive protection cannot offer long-term anticorrosion on metals. Eco-friendly sustainable and responsive coating for active/passive corrosion protection is desirable to extend the service life of metals. Here, benzotriazole (BTA)-metal organic frameworks (Cu-MOFs, UiO-66) were embedded in silica (SiO2) coating by one-step electrodeposition on copper. Combined with passive capability of MOFs and active protection of BTA inhibitor, the composite coating (BTA-MOF/SiO2) exhibited high and stable corrosion resistance, confirmed by microstructure characterizations and electrochemical tests. As a result, the as-prepared composite coating exhibited superhydrophobicity with a water contact angle of 154.2°. With loading of BTA-MOF in SiO2 coating, the impedance modulus at 0.01 Hz increased by ∼10-fold and the corrosion current density decreased to 3.472 × 10-9 A·cm-2. Immersion and salt spray tests confirmed the long-term protection of the composite coating. The responsive release of BTA inhibitor endows the coating with a responsively anticorrosive behavior. The active-passive ability makes the coating a good candidate for protection on metals used in highly salty environments.
Collapse
Affiliation(s)
- Xu Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yan Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaijie Cao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junxi Zhang
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|