1
|
Lettoof DC, Suzuki M, Nilsson S, Nguyen TV, Bourne N, Pegg CL, Stockwell S, Bose U, Devine J, Contor T, Webber BL, Kaksonen AH, Walsh T, Vardy S, Beale DJ. Ecosurveillance reveals subtle metabolic effects on the non-native cane toad (Rhinella marina) from low levels of accumulated environmental per- and polyfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125968. [PMID: 40043876 DOI: 10.1016/j.envpol.2025.125968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment, bioaccumulate, and may have toxic effects. This study used non-native cane toads (Rhinella marina) to examine PFAS and metal accumulation and impacts in large terrestrial amphibians from urban and peri-urban areas. We quantified 38 PFAS compounds and 36 environmental and legacy metal(loid)s in 52 adult cane toad livers collected from six locations around Southeast Queensland, Australia, along a known PFAS gradient. Associations among PFAS, metal(loid) concentrations, and whole-organism metrics were assessed. An omics-led approach assessed biochemical responses in liver, muscle, fat and gonad/egg tissues associated with these PFAS concentrations. Liver PFAS concentrations ranged from 0.5 to 82.1 μg/kg ww, with one male outlier at 452 μg/kg ww (mean: 18 ± 21 SD μg/kg ww, excluding outlier). PFOS was the most dominant PFAS (60 ± 26 SD% of total), followed by PFDoDA (13 ± 9 SD%). The liver metal(loid)s with statistically significant variation among locations and sex were Al, As, Ca, Cu, Mn, Ni, Se, Sn, Sr and V. Total PFAS had no associations with whole-organism metrics, and body condition and relative femur length showed a weak interaction effect between PFAS and Ni. Metabolic profiling revealed sex-specific differences linked to total PFAS, with females showing a broader metabolic perturbation. The strongest metabolic signals were in glycerolipid metabolism, ether lipid metabolism, and fatty acid biosynthesis, though these effects were statistically weak. PFAS and metal(loid) levels were low compared to those previously recorded in tertiary consumers and aquatic vertebrates from contaminated areas. Despite minor metabolomic changes, the overall health impact was minimal. These findings contribute to the development of tissue PFAS guideline values for wild amphibians, but further studies on higher PFAS levels of accumulation and responses of additional amphibian species are needed.
Collapse
Affiliation(s)
- Damian C Lettoof
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Waterford, WA 6014, Australia; School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
| | - Marina Suzuki
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | - Thao V Nguyen
- Environment Research Unit, CSIRO, Ecosciences Precinct, Dutton Park Qld, 4102, Australia
| | - Nicholas Bourne
- Agriculture & Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Cassandra L Pegg
- Agriculture & Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Sally Stockwell
- Agriculture & Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Utpal Bose
- Agriculture & Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Jacob Devine
- Griffith University, School of Environment and Science, Nathan, QLD, Australia
| | - Tyler Contor
- Griffith University, School of Environment and Science, Nathan, QLD, Australia
| | - Bruce L Webber
- Health & Biosecurity Research Unit, CSIRO, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Anna H Kaksonen
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Waterford, WA 6014, Australia
| | - Tom Walsh
- Environment Research Unit, CSIRO, Black Mountain Laboratories, Acton, ACT, 2602, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD, 4102, Australia
| | - David J Beale
- Environment Research Unit, CSIRO, Ecosciences Precinct, Dutton Park Qld, 4102, Australia
| |
Collapse
|
2
|
Yang L, Li P, Bai L, Cao J, Yan H. Innovative hierarchical porous hydrophilic molecularly imprinted resin for high-throughput detection of perfluorocarboxylic acids in milk using 96-well plate SPE-LC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135989. [PMID: 39357359 DOI: 10.1016/j.jhazmat.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The accumulation of perfluorocarboxylic acids (PFCAs) in environment and foods represents a significant threat to public health due to the long-term ingestion of contaminated food. This study introduces a novel adsorbent, the hierarchical porous hydrophilic molecularly imprinted resin (HPHMIR), which was synthesized by integrating molecular imprinting techniques with hydrophilic resins. The HPHMIR, characterized by its extensive mesoporous structure (average pore width ∼9.71 nm) and favorable imprinting factors (2.6-5.0), facilitates the effective adsorption of PFCAs from complex matrices through multiple interaction mechanisms, including hydrogen bonding and electrostatic interactions. This innovative material was employed in a 96-well plate format for solid-phase extraction (SPE), and combined with LC-MS/MS, a high-throughput method for the determination of PFCAs in milk was developed. The proposed method demonstrated exceptional performance, including excellent linearity (0.48-240 ng mL-1; r ≥ 0.9986), low detection limits (0.04-0.11 ng mL-1), high precision (relative standard deviation ≤ 9.9 %), and satisfactory recovery (75.7-118.1 %). These results highlight the efficacy of the method in extracting trace levels of PFCAs from complicated sample matrices, presenting a promising alternative for monitoring PFCA contamination and advancing public health standards.
Collapse
Affiliation(s)
- Lansen Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Beale DJ, Limpus D, Sinclair G, Bose U, Bourne N, Stockwell S, Lettoof DC, Shah R, Nguyen TV, Gonzalez-Astudillo V, Braun C, Myburgh A, Baddiley B, Shimada T, Limpus C, Vardy S. Forever chemicals don't make hero mutant ninja turtles: Elevated PFAS levels linked to unusual scute development in newly emerged freshwater turtle hatchlings (Emydura macquarii macquarii) and a reduction in turtle populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024:176313. [PMID: 39537477 DOI: 10.1016/j.scitotenv.2024.176313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants known to pose significant risks to human and wildlife health. Freshwater turtles (Emydura macquarii macquarii), as long-lived species inhabiting aquatic ecosystems, are particularly vulnerable to PFAS bioaccumulation. This study investigated the multifaceted impact of PFAS contamination on these turtles, focusing on metabolic disruptions, reproductive success, hatchling health, and population impacts. Comprehensive analyses, including proteomics, lipidomics, metabolomics, and histopathology, were conducted on turtles from PFAS-impacted, control, and reference sites. The findings reveal significant metabolic disruptions in PFAS-exposed turtles, with alterations in amino acid and lipid metabolism, energy production, and oxidative stress responses. Proteomic analysis identified several health biomarkers indicative of early disease progression. Despite high levels of PFAS in tissues and organs, no gross or histopathological phenotypical abnormalities were directly linked to PFAS exposure. Gravid females from contaminated sites exhibited altered egg composition, particularly in magnesium to calcium ratios, potentially affecting eggshell strength. Biochemical profiles of egg albumin and yolk indicated significant differences in metabolites and lipids between contaminated and reference sites, suggesting potential impacts on embryo development. Hatchling deformities were notably higher and with increased frequency in terms of the types of deformities at the PFAS-impacted sites, with common defects including abnormal intergular scale shapes and marginal scale counts. Furthermore, the demographic profile of the turtle population showed a lack of juvenile turtles at contaminated sites, indicating reduced recruitment and potential long-term population declines. This indicates a field-based demonstration of an Adverse Outcome Pathway, from elevated levels of PFAS in the turtles, to biochemical perturbations within the animals, and finally population effects. These findings underscore the urgent need for regulatory measures to address PFAS contamination and its detrimental effects on wildlife.
Collapse
Affiliation(s)
- David J Beale
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia.
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Georgia Sinclair
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | - Utpal Bose
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Nicholas Bourne
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sally Stockwell
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Damian C Lettoof
- Environment Research Unit, CSIRO, Centre for Environment and Life Sciences, Floreat, WA 6014, Australia
| | - Rohan Shah
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia
| | - Thao V Nguyen
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | | | - Christoph Braun
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Albert Myburgh
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Taka Shimada
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Colin Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| |
Collapse
|
4
|
Beale DJ, Nguyen TV, Bose U, Shah R, Nelis JLD, Stockwell S, Broadbent JA, Nilsson S, Rane R, Court L, Lettoof DC, Pandey G, Walsh TK, Shaw S, Llinas J, Limpus D, Limpus C, Braun C, Baddiley B, Vardy S. Metabolic disruptions and impaired reproductive fitness in wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171743. [PMID: 38494020 DOI: 10.1016/j.scitotenv.2024.171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) pose a threat to organisms and ecosystems due to their persistent nature. Ecotoxicology endpoints used in regulatory guidelines may not reflect multiple, low-level but persistent stressors. This study examines the biological effects of PFAS on Eastern short-necked turtles in Queensland, Australia. In this study, blood samples were collected and analysed for PFAS, hormone levels, and functional omics endpoints. High levels of PFAS were found in turtles at the impacted site, with PFOS being the dominant constituent. The PFAS profiles of males and females differed, with males having higher PFAS concentrations. Hormone concentrations differed between impacted and reference sites in male turtles, with elevated testosterone and corticosterone indicative of stress. Further, energy utilisation, nucleotide synthesis, nitrogen metabolism, and amino acid synthesis were altered in both male and female turtles from PFAS-impacted sites. Both sexes show similar metabolic responses to environmental stressors from the PFAS-contaminated site, which may adversely affect their reproductive fitness. Purine metabolism, caffeine metabolism, and ferroptosis pathway changes in turtles can cause gout, cell death, and overall health problems. Further, the study showed that prolonged exposure to elevated PFAS levels in the wild could compromise turtle reproductive fitness by disrupting reproductive steroids and metabolic pathways.
Collapse
Affiliation(s)
- David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia.
| | - Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Rohan Shah
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia; School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia
| | - Joost Laurus Dinant Nelis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sally Stockwell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Rahul Rane
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, Vic 3052, Australia
| | - Leon Court
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Damian C Lettoof
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Centre for Environment and Life Sciences, Floreat, WA 6014, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Thomas K Walsh
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Stephanie Shaw
- Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Moggill, Qld 4070, Australia
| | - Josh Llinas
- The Unusual Pet Vets Jindalee, Veterinarian, Jindalee, Qld 4074, Australia
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Colin Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Christoph Braun
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| |
Collapse
|