1
|
Alqahtani QH, Alshehri S, Alhusaini AM, Sarawi WS, Alqarni SS, Mohamed R, Kumar MN, Al-Saab J, Hasan IH. Protective Effects of Sitagliptin on Streptozotocin-Induced Hepatic Injury in Diabetic Rats: A Possible Mechanisms. Diseases 2023; 11:184. [PMID: 38131990 PMCID: PMC10743245 DOI: 10.3390/diseases11040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetes is a ubiquitous disease that causes several complications. It is associated with insulin resistance, which affects the metabolism of proteins, carbohydrates, and fats and triggers liver diseases such as fatty liver disease, steatohepatitis, fibrosis, and cirrhosis. Despite the effectiveness of Sitagliptin (ST) as an antidiabetic drug, its role in diabetes-induced liver injury is yet to be fully investigated. Therefore, this study aims to investigate the effect of ST on hepatic oxidative injury, inflammation, apoptosis, and the mTOR/NF-κB/NLRP3 signaling pathway in streptozotocin (STZ)-induced liver injury. Rats were allocated into four groups: two nondiabetic groups, control rats and ST rats (100 mg/kg), and two diabetic groups induced by STZ, and they received either normal saline or ST for 90 days. Diabetic rats showed significant hyperglycemia, hyperlipidemia, and elevation in liver enzymes. After STZ induction, the results revealed remarkable increases in hepatic oxidative stress, inflammation, and hepatocyte degeneration. In addition, STZ upregulated the immunoreactivity of NF-κB/p65, NLRP3, and mTOR but downregulated IKB-α in liver tissue. The use of ST mitigated metabolic and hepatic changes induced by STZ; it also reduced oxidative stress, inflammation, and hepatocyte degeneration. The normal expression of NF-κB/p65, NLRP3, mTOR, and IKB-α were restored with ST treatment. Based on that, our study revealed for the first time the hepatoprotective effect of ST that is mediated by controlling inflammation, oxidative stress, and mTOR/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Sana S. Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Raessa Mohamed
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Meha N. Kumar
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200233, China;
| | - Juman Al-Saab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| |
Collapse
|
2
|
Sheikh R, Shakerian S, Fatemi Tabatabaei SR, Habibi A. Moderate and high-intensity interval training protect against diabetes-induced modulation of hepatic CD86 and CD206 expression associated with the amelioration of insulin resistance and inflammation in rats. Immunobiology 2023; 228:152745. [PMID: 37722328 DOI: 10.1016/j.imbio.2023.152745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Diabetes Mellitus (DM) can damage the function of metabolic tissues, including the liver. Liver macrophages are the first responders to tissue damage or exercise. We sought to determine whether eight weeks of interval training (HIIT & MIIT) protect against diabetes-induced modulation of hepatic CD86 and CD206 expression associated with the amelioration of insulin resistance and inflammation in rats. Thirty rats were divided into six groups, including a control group, MIIT, HIIT, DM, DM + MIIT, and DM + HIIT (n = 5 in each group). Diabetes was induced using a combination of a high-fat diet (HFD) and STZ. Wistar rats in the exercise groups were subjected to moderate and high-intensity interval training for eight weeks. After sample collection, liver tissue was removed and weighed. Serum levels of TNFα, IL-6, TGFβ, and IL-10 were measured by ELISA. Protein expression of the immune markers CD86 and CD206 in liver tissue was determined by immunohistochemical staining. Induction of diabetes increased glycemic indices, insulin resistance, and liver injury enzymes, especially in DM and DM + HIIT groups (p < 0.05). Moreover, diabetic groups showed an increase in liver CD86 protein expression, an increase in TNFα, IL-6, and TGFβ serum levels, and a decrease in liver CD206 and serum IL-10 (p < 0.05). Doing exercise while being diabetic, especially MIIT, significantly reversed the aforementioned factors and reduced insulin resistance (p < 0.05), except IL-10). We concluded that performing exercise training specially MIIT by decreasing CD86 and increasing CD206 in the liver, followed by decreasing pro-inflammatory factors (TNFα, IL-6) caused the regulation of liver enzymes and insulin resistance in diabetic rats. Therefore, it seems that exercise training by regulating macrophage markers CD86 and CD206 can reduce damage to the insulin-signaling pathway by reducing pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Reza Sheikh
- Ph.D Student of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Saeid Shakerian
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | | | - Abdolhamid Habibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Iskender H, Dokumacioglu E, Terim Kapakin KA, Bolat I, Mokhtare B, Hayirli A, Yenice G. Effect of Oleanolic acid administration on hepatic AMPK, SIRT-1, IL-6 and NF-κB levels in experimental diabetes. J Diabetes Metab Disord 2023; 22:581-590. [PMID: 37255809 PMCID: PMC10225422 DOI: 10.1007/s40200-022-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Diabetes mellitus (DM) is an important public health problem all over the world, considering its complications and increasing prevalence. Oleanolic acid (OA) has anti-diabetic property via modulating glucose metabolism and acting as 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) / Sirtuin-1 (SIRT-1) activator and Interleukin 6 (IL-6) / Nuclear factor kappa B (NF-κB) inhibitor. This research questioned if the OA treatment amliorates the hepatic inflammatory profile in the diabetic rats. METHODS Twenty-eight male Sprague Dawley rats were first subjected to either no diabetes induction (healthy) or diabetes induction by i.p. injection of 50 mg/kg streptozotocin. Then rats in both groups were treated with either tap water or OA (5 mg/kg) within 1 ml tap water by oral gavage for 21 days. RESULTS The diabetic rats had higher hepatic MDA (2.88x) and serum AST (2.01x), ALP (2.22x), and ALT (4.27x) levels and 50% lower hepatic SOD level than the healthy rats. The OA treatment significantly reversed these antioxidant parameters in the diabetic rats. The diabetic rats had lower AMPK (85%) and hepatic SIRT-1 (47%) levels and higher hepatic NF-κB (53%) and IL-6 (34%) levels than the healthy rats. Comparing with the health rats, the OA treatment increased hepatic SIRT-1 level, but tended to increase hepatic AMPK level and decrease hepatic NF-κB and IL-6 levels in the diabetic rats. It was also partially effective to ameliorate degenerative changes and necrosis in the diabetic rats. CONCLUSION The OA treatment can be considered to alleviate oxidative stress and reduce severity of inflammation in hepatocytes in the diabetic subjects.
Collapse
Affiliation(s)
- Hatice Iskender
- Faculty of Healthy Sciences, Department of Nutrition and Dietetics, Artvin Coruh University, 08000 Artvin, Turkey
| | - Eda Dokumacioglu
- Faculty of Healthy Sciences, Department of Nutrition and Dietetics, Artvin Coruh University, 08000 Artvin, Turkey
| | | | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Behzat Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Jia RB, Li ZR, Lin L, Luo D, Chen C, Zhao M. The potential mechanisms of Macrocystis pyrifera polysaccharides mitigating type 2 diabetes in rats. Food Funct 2022; 13:7918-7929. [PMID: 35789357 DOI: 10.1039/d2fo01083f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Our previous studies have proved that the anti-digestive polysaccharide from Macrocystis pyrifera possesses potential hypoglycemic and lipid-lowering activities; however, its potential mechanisms for improving diabetes have not been elucidated. The current study was aimed to determine the anti-diabetic effects and possible mechanisms of Macrocystis pyrifera polysaccharides (MPP) in diabetic rats. After 8-week MPP treatment, the serum profiles, gut bacteria composition and relative gene expressions of rats were determined. MPP administration effectively ameliorated the diabetic symptoms, dyslipidemia, liver and kidney damage, oxidative stress and chronic inflammation in diabetic rats. In addition, MPP treatment could also notably improve the microbial dysbiosis by increasing the beneficial bacteria and decreasing a bacterial pathogen in the diabetic rats. The RT-qPCR analysis indicated that MPP intervention significantly up-regulated the IRS/PI3K/AKT signaling pathway and down-regulated the relative expressions of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), acetyl-CoA carboxylase (ACC), hydroxymethylglutaryl CoA reductase (HMGCR) and sterol regulatory element binding protein 1c (SREBP-1c) in diabetic rats. These results demonstrated that MPP had the potential to be exploited as functional foods or pharmaceutical supplements for preventing and treating diabetes.
Collapse
Affiliation(s)
- Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhao-Rong Li
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 524088, China.
| | - Chong Chen
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Differences in kinetics and dynamics of endogenous versus exogenous advanced glycation end products (AGEs) and their precursors. Food Chem Toxicol 2022; 164:112987. [PMID: 35398182 DOI: 10.1016/j.fct.2022.112987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) and their precursors, referred to as glycation products, are a heterogenous group of compounds being associated with adverse health effects. They are formed endogenously and in exogenous sources including food. This review investigates the roles of endogenously versus exogenously formed glycation products in the potential induction of adverse health effects, focusing on differences in toxicokinetics and toxicodynamics, which appeared to differ depending on the molecular mass of the glycation product. Based on the available data, exogenous low molecular mass (LMM) glycation products seem to be bioavailable and to contribute to dicarbonyl stress and protein cross-linking resulting in formation of endogenous AGEs. Bioavailability of exogenous high molecular mass (HMM) glycation products appears limited, while these bind to the AGE receptor (RAGE), initiating adverse health effects. Together, this suggests that RAGE-binding in relevant tissues will more likely result from endogenously formed glycation products. Effects on gut microbiota induced by glycation products is proposed as a third mode of action. Overall, studies which better discriminate between LMM and HMM glycation products and between endogenous and exogenous formation are needed to further elucidate the contributions of these different types and sources of glycation products to the ultimate biological effects.
Collapse
|
6
|
El-Demerdash FM, Talaat Y, El-Sayed RA, Kang W, Ghanem NF. Hepatoprotective Effect of Actinidia deliciosa against Streptozotocin-Induced Oxidative Stress, Apoptosis, and Inflammations in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1499510. [PMID: 35345832 PMCID: PMC8957427 DOI: 10.1155/2022/1499510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 12/23/2022]
Abstract
The present research intended to assess the possible protective and hypoglycemic effect of Actinidia deliciosa fruit aqueous extract (ADAE) in diabetic rats. The scavenging antioxidant capabilities of ADAE were evaluated using GC-MS analysis. In addition, rats were divided into four groups: control, ADAE, streptozotocin-induced DM (STZ), and STZ-treated rats + ADAE in an in vivo investigation. GC-MS analysis of ADAE was shown to include major components with high total phenolic contents and high DPPH scavenging activity. In diabetic rats, significant elevation in blood glucose level, lipid peroxidation, bilirubin, and lactate dehydrogenase activity as well as a change in lipid profile was observed, while insulin, body and liver weights, enzymatic and nonenzymatic antioxidants, liver function biomarkers, and protein content were significantly decreased. Furthermore, changes in the expression of the peroxisome proliferator-activated receptor (PPAR-γ), apoptotic, and inflammation-related genes were found. In addition, histological differences in rat liver tissue architecture were discovered, corroborating the biochemical modifications. However, consuming ADAE alone reduced lipid peroxidation and improved antioxidant status. Furthermore, diabetic rats given ADAE showed significant reductions in oxidative stress indicators and biochemical parameters, as well as improved tissue structure, when compared to the diabetic rats' group. Also, ADAE supplementation protects diabetic rats' hepatic tissue by upregulating PPAR-γ and downregulating apoptotic and inflammatory-related gene expression. In conclusion, A. deliciosa has beneficial protective effects so, it might be used as a complementary therapy in diabetes mellitus.
Collapse
Affiliation(s)
- Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Yousra Talaat
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Raghda A. El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Nora F. Ghanem
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
7
|
Zhao F, Zhu K, Zhao Q, Liu Q, Cao J, Xia G, Liu Z, Li C. Holothuria leucospilota polysaccharides alleviate liver injury via AMPK and NF-κB signaling pathways in type 2 diabetic rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Fournier Q, Höhn A, Deubel S, Milne E, Bavcar S, Morrison L. Characterization of Black Pigmenturia in a Cat with Apocrine Gland Cystadenocarcinoma. J Comp Pathol 2020; 176:145-150. [PMID: 32359628 DOI: 10.1016/j.jcpa.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
An 8-year-old neutered female domestic shorthair cat was presented for further management of an apocrine gland cystadenocarcinoma. Extensive nodal metastasis was diagnosed and the cat was humanely destroyed 2 months after presentation. Post-mortem histopathology of the cystadenocarcinoma revealed areas of yellow-brown granular pigmentation on light microscopy, staining positively for reducing substances with Schmorl's stain and demonstrating autofluorescence on confocal microscopy. The cat's urine was black and also exhibited autofluorescence, and further analysis revealed increased free pentosidine. Based on these findings, it was presumed that the apocrine gland cystadenocarcinoma was producing lipofuscin-like pigments and that the characteristics of the urine were at least partially secondary to advanced glycation end-products.
Collapse
Affiliation(s)
| | - A Höhn
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany
| | - S Deubel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany
| | - E Milne
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | | | - L Morrison
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
10
|
Pereira ENGDS, Silvares RR, Flores EEI, Rodrigues KL, Ramos IP, da Silva IJ, Machado MP, Miranda RA, Pazos-Moura CC, Gonçalves-de-Albuquerque CF, Faria-Neto HCDC, Tibiriça E, Daliry A. Hepatic microvascular dysfunction and increased advanced glycation end products are components of non-alcoholic fatty liver disease. PLoS One 2017. [PMID: 28628674 PMCID: PMC5476253 DOI: 10.1371/journal.pone.0179654] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study aimed to investigate the pathophysiology of hepatic microcirculatory dysfunction in non-alcoholic fatty liver disease (NAFLD). METHODS In Wistar rats, NAFLD model was induced by 20 weeks of high-fat diet (HFD) feeding. Rolling and adhesion of leukocytes and tissue perfusion in hepatic microcirculation were examined using in vivo microscopic and laser speckle contrast imaging (LSCI), respectively. Oxidative stress and inflamatory parameters were analysed by TBARs, catalase enzyme activity, RT-PCR and ELISA. The participation of advanced glycation end-products (AGE) and its receptor RAGE was evaluated by the measurement of gene and protein expression of RAGE by RT-PCR and Western-blot, respectively and by liver and serum quantification of fluorescent AGEs. RESULTS Wistar rats fed high-fat diet (HFD) showed increase in epididymal and abdominal fat content, systolic arterial blood pressure, fasting blood glucose levels, hepatic triglycerides and cholesterol, and impairment of glucose and insulin metabolisms. Liver histology confirmed the presence of steatosis and ultrasound analysis revealed increased liver size and parenchymal echogenicity in HFD-fed rats. HFD causes significant increases in leukocyte rolling and adhesion on hepatic microcirculation and decrease in liver microvascular blood flow. Liver tissue presented increase in oxidative stress and inflammtion. At 20 weeks, there was a significantly increase in AGE content in the liver and serum of HFD-fed rats and an increase in RAGE gene expression in the liver. CONCLUSION The increase in liver AGE levels and microcirculatory disturbances could play a role in the pathogenesis of liver injury and are key components of NAFLD.
Collapse
Affiliation(s)
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | | | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Isalira Peroba Ramos
- Laboratory of Celular and Molecular Cardiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- National Center of Structural Biology and Bio-imaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor José da Silva
- Laboratory of Pathology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Eduardo Tibiriça
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
11
|
Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 2016; 16:e132-41. [PMID: 27226903 PMCID: PMC4868511 DOI: 10.18295/squmj.2016.16.02.002] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals.
Collapse
Affiliation(s)
- Jamaludin Mohamed
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Nazratun Nafizah
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Zariyantey
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S. B. Budin
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7867852. [PMID: 26942201 PMCID: PMC4753052 DOI: 10.1155/2016/7867852] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
AGEs are a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with free amino groups of proteins, lipids, and/or nucleic acids. AGEs have been shown to play a role in various conditions including cardiovascular disease and diabetes. In this study, we hypothesized that AGEs play a role in the “multiple hit hypothesis” of nonalcoholic fatty liver disease (NAFLD) and contribute to the pathogenesis of hepatosteatosis. We measured the effects of various mouse chows containing high or low AGE in the presence of high or low fat content on mouse weight and epididymal fat pads. We also measured the effects of these chows on the inflammatory response by measuring cytokine levels and myeloperoxidase activity levels on liver supernatants. We observed significant differences in weight gain and epididymal fat pad weights in the high AGE-high fat (HAGE-HF) versus the other groups. Leptin, TNF-α, IL-6, and myeloperoxidase (MPO) levels were significantly higher in the HAGE-HF group. We conclude that a diet containing high AGEs in the presence of high fat induces weight gain and hepatosteatosis in CD-1 mice. This may represent a model to study the role of AGEs in the pathogenesis of hepatosteatosis and steatohepatitis.
Collapse
|
13
|
|
14
|
Xu H, Wang Z, Wang Y, Hu S, Liu N. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS One 2013; 8:e57897. [PMID: 23505446 PMCID: PMC3591457 DOI: 10.1371/journal.pone.0057897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Nε-carboxymethyl-lysine (CML) is a major advanced glycation end-product (AGEs) widely found in foods. The aim of our study was to evaluate how exogenous CML-peptide is dynamically absorbed from the gastrointestinal tract and eliminated by renal tubular secretion using microPET imaging. Methods The present study consisted of three investigations. In study I, we synthesized the imaging tracer 18F-CML by reacting N-succinimidyl 4-18F-fluorobenzoate (18F-SFB) with CML. In study II, the biological activity of 18F-CML was evaluated in RAW264.7 cells and HepG2 cells. In study III, the biodistribution and elimination of AGEs in ICR mice were studied in vivo following tail vein injection and intragastric administration of 18F-CML. Result The formation of 18F-CML was confirmed by comparing its retention time with the corresponding reference compound 19F-CML. The radiochemical purity (RCP) of 18F-CML was >95%, and it showed a stable character in vitro and in vivo. Uptake of 18F-CML by RAW264.7 cells and HepG2 cells could be inhibited by unmodified CML. 18F-CML was quickly distributed via the blood, and it was rapidly excreted through the kidneys 20 min after tail vein injection. However, 18F-CML was only slightly absorbed following intragastric administration. After administration of 18F-CML via a stomach tube, the radioactivity was completely localized in the stomach for the first 15 min. At 150 min post intragastric administration, intense accumulation of radioactivity in the intestines was still observed. Conclusions PET technology is a powerful tool for the in vivo analysis of the gastrointestinal absorption of orally administered drugs. 18F-CML is hardly absorbed by the gastrointestinal tract. It is rapidly distributed and eliminated from blood following intravenous administration. Thus, it may not be harmful to healthy bodies. Our study showed the feasibility of noninvasively imaging 18F-labeled AGEs and was the first to describe CML-peptide gastrointestinal absorption by means of PET.
Collapse
Affiliation(s)
- Hongzeng Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhongqun Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Wang
- Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Shengda Hu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
15
|
Lee BH, Hsu WH, Chang YY, Kuo HF, Hsu YW, Pan TM. Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radic Biol Med 2012; 53:2008-16. [PMID: 23022408 DOI: 10.1016/j.freeradbiomed.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/04/2012] [Accepted: 09/15/2012] [Indexed: 12/15/2022]
Abstract
Ankaflavin (AK) is an active compound having anti-inflammatory, anti-cancer, antiatherosclerotic, and hypolipidemic effects. We have previously reported that AK acts as an antioxidant and antidiabetic drug; however, the mechanism by which AK prevents diabetes remains unknown. Hyperglycemia is associated with protein glycation, which produces advanced glycation end-products (AGEs). Methylglyoxal (MG)-a metabolite of carbohydrates-is believed to cause insulin resistance by inducing inflammation and pancreas damage. In this work, diabetes was induced in Wistar rats (4 weeks of age) by treating them with MG (600 mg/kg bw) for 4 weeks. We observed that AK (10mg/kg bw) exerted peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity, thereby enhancing insulin sensitivity (as indicated by hepatic GLUT2 translocation, PTP1B suppression, and glucose uptake) by downregulating blood glucose and upregulating pancreatic and duodenal homeobox-1 and Maf-A expression and increasing insulin production in MG-induced rats. However, these effects were abolished by the administration of GW9662 (PPARγ antagonist), but the expression of hepatic heme oxygenase-1 (HO-1) and glutamate-cysteine ligase (GCL) was not suppressed in MG-induced rats. Therefore, the nuclear factor erythroid-related factor-2 (Nrf2) activation was investigated. AK did not affect hepatic Nrf2 mRNA or protein expression but significantly increased Nrf2 phosphorylation (serine 40), which was accompanied by increased transcriptional activation of hepatic HO-1 and GCL. These data indicated that AK protected rats from oxidative stress resulting from MG-induced insulin resistance. In contrast, these effects were not detected when the rats were treated with the antidiabetic drug rosiglitazone (10mg/kg bw). Moreover, we found that AK did not inhibit the generation of AGEs in vitro; however, the glutathione (GSH) levels in liver and pancreas of MG-induced rats were elevated in rats administered AK. Therefore, we believe that GSH may lower the MG level, which attenuates the formation of AGEs in the serum, kidney, liver, and pancreas of MG-induced rats. We also found that AK treatment reduced the production of inflammatory factors, such as tumor necrosis factor-α and interleukin-1β. Taken together, the results of our mechanistic study of MG-induced rats suggest that the protective effects of AK against diabetes are mediated by the upregulation of the signaling pathway of Nrf2, which enhances antioxidant activity and serves as a PPARγ agonist to enhance insulin sensitivity.
Collapse
MESH Headings
- Anilides/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Blood Glucose
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Flavins/pharmacology
- Flavins/therapeutic use
- Gene Expression/drug effects
- Gene Expression Regulation
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/metabolism
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/blood
- Insulin Resistance
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/physiopathology
- Male
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress/drug effects
- PPAR gamma/agonists
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/metabolism
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreas/physiopathology
- Phosphorylation
- Protein Processing, Post-Translational
- Pyruvaldehyde
- Rats
- Rats, Wistar
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Health effects of dietary Maillard reaction products: the results of ICARE and other studies. Amino Acids 2010; 42:1119-31. [DOI: 10.1007/s00726-010-0776-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 01/12/2023]
|
17
|
Cheluvappa R, Denning GM, Lau GW, Grimm MC, Hilmer SN, Le Couteur DG. Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells. Int J Infect Dis 2010; 14:e857-67. [PMID: 20609608 DOI: 10.1016/j.ijid.2010.02.2263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 11/30/2009] [Accepted: 02/25/2010] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common opportunistic pathogens, especially after liver transplantation. Pathophysiological alterations of liver sinusoidal endothelial cells (LSECs) have far-reaching repercussions on the liver and on metabolism. LSECs are perforated with fenestrations, pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) and the P. aeruginosa toxin, pyocyanin, have marked effects on LSECs. Initial loss of LSEC porosity (defenestration) induced by P. aeruginosa pyocyanin and LPS may confer subsequent immune tolerance to circulating bacterial antigens and toxins. This review collates the known immune responses of the liver to Gram-negative bacterial toxins, with a focus on LSECs. Hyperlipidemia is an important response to Gram-negative bacterial sepsis. The mechanisms proposed for sepsis-associated hyperlipidemia include tissue lipoprotein lipase inhibition and upregulated hepatic triglyceride production. In this review, we propose defenestration of the LSECs by bacterial toxins as an additional mechanism for the hyperlipidemia of sepsis. Given the role of LSECs in hyperlipidemia and liver allograft rejection, LSEC changes induced by P. aeruginosa toxins including LPS and pyocyanin may have significant clinical implications.
Collapse
Affiliation(s)
- Rajkumar Cheluvappa
- Department of Medicine, St. George Clinical School and Centre for Infection and Inflammation Research, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Gate 9 High Street, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Cogger VC, Arias IM, Warren A, McMahon AC, Kiss DL, Avery VM, Le Couteur DG. The response of fenestrations, actin, and caveolin-1 to vascular endothelial growth factor in SK Hep1 cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G137-G145. [PMID: 18497335 PMCID: PMC2494729 DOI: 10.1152/ajpgi.00069.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willebrand factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase and clathrin, but not CD31. There was avid uptake of formaldehyde serum albumin, consistent with endocytosis. Vascular endothelial growth factor caused an increase in porosity to 4.8 +/- 2.6% (P < 0.01) and pore diameter to 104 +/- 59 nm (P < 0.001). GFP-actin was expressed throughout the cells, whereas GFP-caveolin-1 had a punctate appearance; both responded to vascular endothelial growth factor by contraction toward the nucleus over hours in parallel with the formation of fenestrations. SK Hep1 cells resemble liver sinusoidal endothelial cells, and the vascular endothelial growth factor-induced formation of fenestration-like pores is preceded by contraction of actin cytoskeleton and attached caveolin-1 toward the nucleus.
Collapse
Affiliation(s)
- Victoria C. Cogger
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Irwin M. Arias
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Alessandra Warren
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Aisling C. McMahon
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Debra L. Kiss
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Vicky M. Avery
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - David G. Le Couteur
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| |
Collapse
|
19
|
Butscheid M, Schäfer C, Brenner S, Alscher D, Mürdter T, Niwa T, Frischmann M, Pischetsrieder M, Klotz U. Unchanged serum levels of advanced glycation endproducts in patients with liver disease. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:401-6. [PMID: 17571253 DOI: 10.1007/s00210-007-0171-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
Advanced glycation end products (AGEs), e.g., carboxymethyllysine (CML) or imidazolone are involved in several age-related disorders. Concerning their accumulation, the importance of hepatic and renal function is controversially discussed. To test whether impairment of hepatic or renal function will affect their accumulation, both AGEs have been measured in various populations, such as 52 patients with liver disease [viral hepatitis C without (n = 19) and with (n = 10) fatty liver; nonalcoholic fatty liver (n = 13), nonalcoholic steatohepatitis (n = 10)]. Serum concentrations of both AGEs have been compared to those in 20 healthy controls and 24 patients with moderate renal impairment (creatinine clearance 23-55 ml/min). Concerning CML (95% C.I. 803-1200 ng/ml), no differences between the various groups could be observed. Likewise, serum levels of imidazolone (95% C.I. 1.3-5.6 units) were similar in all populations. In conclusion, moderate impairment in hepatic or in renal function did not affect serum levels of CML and imidazolone. Apparently, any increase observed in severe cirrhosis or renal failure seems to be rather a consequence than a cause of both disorders.
Collapse
Affiliation(s)
- Moritz Butscheid
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yagmur E, Tacke F, Weiss C, Lahme B, Manns MP, Kiefer P, Trautwein C, Gressner AM. Elevation of Nepsilon-(carboxymethyl)lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis. Clin Biochem 2006; 39:39-45. [PMID: 16321365 DOI: 10.1016/j.clinbiochem.2005.07.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Progression of liver fibrosis to cirrhosis is a dire consequence of chronic liver diseases (CLD). Nepsilon-(carboxymethyl)lysine (CML)-modified advanced glycation end products (AGEs) in patients with CLD could reflect the degree of severity of the disease. DESIGN AND METHODS In 110 patients with CLD and 124 healthy controls, CML serum levels and their diagnostic sensitivity and specificity were determined and compared to hyaluronan (HA). RESULTS Serum levels of CML were significantly affected by the stage of liver cirrhosis and were closely associated with liver function capacity. CML correlated positively with HA (r = 0.639, P < 0.0001). In ROC analysis, the diagnostic sensitivity and specificity in distinguishing healthy controls from liver disease patients for CML (AUC 0.908; 95%-CI 0.863-0.942, cut-off 640 ng/mL, sensitivity 74.5% and specificity 97.6%) resembled HA (AUC 0.948; 95%-CI 0.907-0.974; cut-off 50 ng/mL, sensitivity 80.7% and specificity 97.9%). The combination of CML and HA shows an AUC of 0.932; 95%-CI 0.888-0.962; sensitivity 82.6%; and specificity 95.8%. CONCLUSIONS Our data suggest that serum levels of CML could provide a supplementary diagnostic marker for advanced stages of liver cirrhosis. However, the quality of interaction needs further investigation.
Collapse
Affiliation(s)
- Eray Yagmur
- Institute of Clinical Chemistry and Pathobiochemistry, University Hospital Aachen (UKA), Aachen University (RWTH), Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Stam F, Schalkwijk CG, van Guldener C, ter Wee PM, Stehouwer CDA. Advanced glycation end-product peptides are associated with impaired renal function, but not with biochemical markers of endothelial dysfunction and inflammation, in non-diabetic individuals. Nephrol Dial Transplant 2005; 21:677-82. [PMID: 16330467 DOI: 10.1093/ndt/gfi309] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients with end-stage renal disease as well as mild renal impairment have an increased risk for the development of cardiovascular disease. It has been suggested that advanced glycation end-products (AGEs) are involved in atherogenesis, possibly through induction of endothelial dysfunction and low-grade inflammation. METHODS In a cross-sectional, single-centre study, we investigated four groups of 20 non-diabetic subjects with a creatinine clearance ranging from normal (> 90 ml/min/1.73 m2) to < 31 ml/min/1.73 m2. We measured AGE-peptides, markers of endothelial dysfunction (von Willebrand factor, soluble E-selectin, plasminogen activator inhibitor-1, tissue-type plasminogen activator, soluble vascular cell adhesion molecule-1) and markers of inflammatory activity (soluble intercellular adhesion molecule-1, C-reactive protein, secretory phospholipase A2). We constructed composite endothelial dysfunction and inflammatory activity Z-scores using these markers. RESULTS AGE-peptides were independently related to creatinine clearance (standardized beta -0.55, 95% confidence interval (CI) -0.77 to -0.34, P < 0.001). AGE-peptides were not independently related to the individual markers of endothelial dysfunction and inflammation, nor to the composite endothelial dysfunction Z-score (standardized beta 0.08, 95% CI -0.14 to -0.30, P = 0.48) or the inflammatory activity Z-score (standardized beta -0.05, 95% CI -0.25 to -0.16, P = 0.66). CONCLUSIONS Plasma concentrations of AGE-peptides are associated with creatinine clearance but not with biochemical markers of endothelial dysfunction and inflammatory activity in non-diabetic patients over a wide range of renal function. This suggests that the atherogenic effects of AGE-peptides in individuals with renal functional impairment are not mediated by endothelial dysfunction or inflammatory activity as estimated by the markers used.
Collapse
Affiliation(s)
- Frank Stam
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|