1
|
Hirukawa K, Yagi H, Kuroda K, Watanabe M, Nishi K, Nagata S, Abe Y, Kitago M, Adachi S, Sudo R, Kitagawa Y. Novel approach for reconstruction of the three-dimensional biliary system in decellularized liver scaffold using hepatocyte progenitors. PLoS One 2024; 19:e0297285. [PMID: 38359035 PMCID: PMC10868823 DOI: 10.1371/journal.pone.0297285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Reconstruction of the biliary system is indispensable for the regeneration of transplantable liver grafts. Here, we report the establishment of the first continuous three-dimensional biliary system scaffold for bile acid excretion using a novel method. We confirmed the preservation of the liver-derived extracellular matrix distribution in the scaffold. In addition, hepatocyte progenitors decellularized via the bile duct by slow-speed perfusion differentiated into hepatocyte- and cholangiocyte-like cells, mimicking hepatic cords and bile ducts, respectively. Furthermore, qRT-PCR demonstrated increased ALB, BSEP, and AQP8 expression, revealing bile canaliculi- and bile duct-specific genetic patterns. Therefore, we concluded that locally preserved extracellular matrices in the scaffold stimulated hepatic progenitors and provided efficient differentiation, as well as regeneration of a three-dimensional continuous biliary system from hepatic cords through bile ducts. These findings suggest that organ-derived scaffolds can be utilized for the efficient reconstruction of functional biliary systems.
Collapse
Affiliation(s)
- Kazuya Hirukawa
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Kohei Kuroda
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Masafumi Watanabe
- Institute of Materials Science and Technology (E308), Technische Universität Wien, Vienna, Austria
- Department of System Design Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku, Japan
| |
Collapse
|
2
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Klussmeier A, Aurich S, Niederstadt L, Wiedenmann B, Grötzinger C. Secretin Receptor as a Target in Gastrointestinal Cancer: Expression Analysis and Ligand Development. Biomedicines 2022; 10:biomedicines10030536. [PMID: 35327338 PMCID: PMC8944975 DOI: 10.3390/biomedicines10030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Secretin was originally discovered as a gastrointestinal peptide that stimulates fluid secretion from the pancreas and liver and delays gastric emptying. In disease, a secretin receptor (SCTR) was found to occur as a splice variant in gastrinoma and pancreatic adenocarcinoma. Overexpression of SCTR has been described for gastrinomas, carcinoid tumors of the lung and cholangiocarcinoma. SCTR therefore is considered a candidate target for molecular tumor imaging as well as for peptide receptor radioligand therapy (PRRT) in a number of oncological indications. The aim of this study was to characterize SCTR expression in esophageal and pancreatic cancer, demonstrating for the first time high SCTR overexpression in these tumor types. In total, 65 of 70 pancreatic ductal adenocarcinoma tissues stained strongly positive for SCTR in immunohistochemistry, as did most of the 151 esophageal cancer samples, with minor influence of grading in both entities. In addition, the aim of this study was to further delineate residues in human secretin that are critical for binding to and activation of human SCTR. For a potential development of short and metabolically stable analogs for clinical use, it was intended to probe the peptide for its capacity to incorporate deletions and substitutions without losing its affinity to SCTR. In a systematic approach, a library of 146 secretin variants containing single amino acid substitutions as well as truncations on either end was tested in β-arrestin2-GFP translocation and fluorescent ligand internalization assays employing high-content analysis, in cAMP assays which run in agonist and antagonist mode, and in radioligand binding. The main structural determinants of SCTR binding and activation were localized to the N-terminus, with His1, Asp3 being among the most sensitive positions, followed by Phe6, Thr7 and Leu10. Aminoterminal truncation caused a rapid decline in receptor activity and most of these variants proved to be partial agonists showing antagonistic properties. In this study, the most potent novel antagonist showed an IC50 of 309 ± 74 nM in the β-arrestin2-GFP translocation assay on human SCTR while remaining a weak partial agonist. Future studies will have to demonstrate the utility of further enhanced secretin analogues as tracers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Anja Klussmeier
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Aurich
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Lars Niederstadt
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Partner Site Berlin, German Cancer Consortium (DKTK), 13353 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
4
|
Baiocchi L, Sato K, Ekser B, Kennedy L, Francis H, Ceci L, Lenci I, Alvaro D, Franchitto A, Onori P, Gaudio E, Wu C, Chakraborty S, Glaser S, Alpini G. Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opin Investig Drugs 2021; 30:365-375. [PMID: 33226854 PMCID: PMC8441992 DOI: 10.1080/13543784.2021.1854725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of the patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA.Areas covered: In this review, we discuss CCA-related (1) experimental systems used in preclinical studies; (2) pharmacological targets identified by genetic analysis; (3) results obtained in preliminary trials in human with their pros and cons; and (4) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term 'cholangiocarcinoma' with 'experimental model', 'preclinical model', 'genetic target', 'targeted therapy', 'clinical trial', or 'translational research' was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing.Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
5
|
Zarei K, Stroik MR, Gansemer ND, Thurman AL, Ostedgaard LS, Ernst SE, Thornell IM, Powers LS, Pezzulo AA, Meyerholz DK, Stoltz DA. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. J Transl Med 2020; 100:1388-1399. [PMID: 32719544 PMCID: PMC7578062 DOI: 10.1038/s41374-020-0474-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nick D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah E Ernst
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Yamada M, Okada H, Kikkawa Y, Miyajima A, Itoh T. Tissue substructure-specific deposition of the β3-containing laminin-332 in the biliary epithelium of human and mouse livers. Biochem Biophys Res Commun 2020; 524:465-471. [PMID: 32008745 DOI: 10.1016/j.bbrc.2020.01.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 01/20/2023]
Abstract
Laminin is a family of basement membrane proteins, whose selective and spatiotemporal expression profiles are linked to their various functions in development, maintenance, and functional regulation of different tissues. In the liver, α1-and α5-containing laminin isoforms have been documented to be critically involved in the developmental process of the epithelial tissue of the bile duct. However, possible roles of other laminin isoforms in bile duct formation and function remain elusive. Here, we evaluated public single-cell RNA sequencing databases on human liver cells to reveal expression landscape of laminin genes, and found that genes for laminin-332 subunits were conjointly expressed in the EPCAM+ biliary epithelial cell population. Expression of the β3 and γ2 subunit genes was restricted to biliary epithelial cells in the liver and, remarkably, showed apparent heterogeneity among them. We confirmed the heterogeneous nature of the laminin-β3 expression in murine livers, which was firmly related to morphological substructures in the biliary epithelium. Finally, we generated the liver epithelial tissue-specific laminin- β3 knockout mice and found that this laminin subunit was dispensable under physiological conditions. Together, our present findings have identified the β3 subunit and the related laminin-332 isoform as useful markers and potentially important regulatory molecules for future understanding of pathophysiology in the hepatobiliary system.
Collapse
Affiliation(s)
- Minami Yamada
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hajime Okada
- Division of Mammalian Development, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
7
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Kennedy L, Francis H, Invernizzi P, Venter J, Wu N, Carbone M, Gershwin ME, Bernuzzi F, Franchitto A, Alvaro D, Marzioni M, Onori P, Gaudio E, Sybenga A, Fabris L, Meng F, Glaser S, Alpini G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis. FASEB J 2019; 33:10269-10279. [PMID: 31251081 DOI: 10.1096/fj.201802606r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-β receptor II (dnTGF-βRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-βRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-βRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-βRII mice, there was increased microRNA-125b/TGF-β1/TGF-β receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | | | - Julie Venter
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Marco Carbone
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California-Davis, Davis, California, USA
| | | | | | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Amelia Sybenga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| |
Collapse
|
9
|
Sha M, Cao J, Sun HY, Tong Y, Xia Q. Neuroendocrine regulation of cholangiocarcinoma: A status quo review. Biochim Biophys Acta Rev Cancer 2019; 1872:66-73. [PMID: 31152820 DOI: 10.1016/j.bbcan.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/19/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Increasing studies have demonstrated that neuroendocrine system is involved in the development and progression of cholangiocarcinoma. The neuroendocrine hormones, neurotransmitters and neuropeptides regulate cholangiocarcinoma via affecting pathophysiology of tumor cells. The developing interaction and interplay between neuroendocrine-associated factors and tumor cells provide novel insights into neural control of tumorigenesis and reveal potential therapeutic effect on patients with cholangiocarcinoma. Herein we reviewed the latest findings and achievements which demonstrate the close interactions between neuroendocrine regulation and progression of cholangiocarcinoma. Also, future therapeutic approaches targeting neuroendocrine-associated factors are discussed which may help improve management and treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng Sha
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Jie Cao
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Han-Yong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Ying Tong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
10
|
Fouassier L, Marzioni M, Afonso MB, Dooley S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S, Segatto O, Vaquero J, Marin JJG, Coulouarn C. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019; 39 Suppl 1:43-62. [PMID: 30903728 DOI: 10.1111/liv.14102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.
Collapse
Affiliation(s)
- Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Heidelberg University, Mannheim, Germany
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Serena Mancarella
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Javier Vaquero
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Sorbonne Université, CNRS, Ecole Polytech., Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
11
|
Wu N, Meng F, Zhou T, Venter J, Giang TK, Kyritsi K, Wu C, Alvaro D, Onori P, Mancinelli R, Gaudio E, Francis H, Alpini G, Glaser S, Franchitto A. The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1-Mediated Biliary Senescence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2264-2280. [PMID: 30036520 PMCID: PMC6168967 DOI: 10.1016/j.ajpath.2018.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/26/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-β1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Tianhao Zhou
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Julie Venter
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Thao K Giang
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Konstantina Kyritsi
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Gianfranco Alpini
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas.
| | - Shannon Glaser
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy; Department of Medicine, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| |
Collapse
|
12
|
Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3:939-958. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver diseases, particularly viral hepatitis, cirrhosis and hepatocellular carcinoma, are common in clinical practice with high morbidity and mortality worldwide. Many substances for diagnostic imaging and therapy of liver diseases may have either severe adverse effects or insufficient effectiveness in vivo because of their nonspecific uptake. Therefore, by targeting the delivery of drugs into the liver or specific liver cells, drug efficiency may be largely improved. This review summarizes the up-to-date research progress focusing on nanoparticles targeting the liver for both diagnostic and therapeutic purposes. Targeting strategies, mechanisms of enhanced effects, and clinical applications of nanoparticles are discussed specifically. We believe that new targeting nanotechnology such as nanoprobes for multi-modality imaging and multifunctional nanoparticles would facilitate significant advancements in this active research area in the near future.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS. The physiological roles of secretin and its receptor. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:29. [PMID: 25332973 DOI: 10.3978/j.issn.2305-5839.2012.12.01] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Secretin is secreted by S cells in the small intestine and affects the function of a number of organ systems. Secretin receptors (SR) are expressed in the basolateral domain of several cell types. In addition to regulating the secretion of a number of epithelia (e.g., in the pancreas and biliary epithelium in the liver), secretin exerts trophic effects in several cell types. In this article, we will provide a comprehensive review on the multiple roles of secretin and SR signaling in the regulation of epithelial functions in various organ systems with particular emphasis in the liver. We will discuss the role of secretin and its receptor in health and biliary disease pathogenesis. Finally, we propose future areas of research for the further evaluation of the secretin/secretin receptor axis in liver pathophysiology.
Collapse
Affiliation(s)
- Syeda Afroze
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Fanyin Meng
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kendal Jensen
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kelly McDaniel
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kinan Rahal
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Paolo Onori
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Shannon S Glaser
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| |
Collapse
|
14
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
15
|
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, Venter J, Carpino G, Onori P, Gaudio E, Alpini G, Franchitto A. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238:549-65. [PMID: 23856906 DOI: 10.1177/1535370213489926] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the recent advances related to the heterogeneity of different-sized bile ducts with regard to the morphological and phenotypical characteristics, and the differential secretory, apoptotic and proliferative responses of small and large cholangiocytes to gastrointestinal hormones/peptides, neuropeptides and toxins. We describe several in vivo and in vitro models used for evaluating biliary heterogeneity. Subsequently, we discuss the heterogeneous proliferative and apoptotic responses of small and large cholangiocytes to liver injury and the mechanisms regulating the differentiation of small into large (more differentiated) cholangiocytes. Following a discussion on the heterogeneity of stem/progenitor cells in the biliary epithelium, we outline the heterogeneity of bile ducts in human cholangiopathies. After a summary section, we discuss the future perspectives that will further advance the field of the functional heterogeneity of the biliary epithelium.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Venetikou MS, Meleagros L, Ghatei MA, Bloom SR. Pituitary protein 7B2 plasma levels in patients with liver disease: Comparisons with other hormones and neuropeptides. Oncol Lett 2013; 6:499-506. [PMID: 24137355 PMCID: PMC3789099 DOI: 10.3892/ol.2013.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/30/2013] [Indexed: 11/29/2022] Open
Abstract
7B2, a protein initially isolated from the porcine pituitary gland, has been identified in numerous animal and human tissues, with the highest concentrations in the pituitary and hypothalamus. The 7B2 molecule is highly evolutionarily conserved and is considered to be indispensable in the function and regulation of proprotein convertase 2 (PC2). In the present study, the plasma 7B2 immunoreactivity (7B2-IR) of 18 patients with liver disease was studied. Of these patients, seven (three male and four female), aged 37–67 [54.6±13.5 (SD)] years, suffered from liver cirrhosis of cryptogenic (n=2) or alcoholic (n=5) aetiology. The remaining 11 patients (four male and seven female), aged 22–76 [56.1±17.6 (SD)] years, suffered from miscellaneous liver abnormalities. The clinical diagnosis was confirmed in the majority of patients by the histological examination of a percutaneous liver biopsy or by appropriate radiological investigations. Plasma bilirubin, alkaline phosphatase, aspartate aminotransferase, albumin, prothrombin time, electrolytes, urea and creatinine were measured. The plasma 7B2-IR levels were estimated using a sensitive radioimmunoassay (RIA), and the elution position of 7B2-IR was verified by gel chromatography. The mean plasma 7B2-IR concentration in patients with liver disease was 99.44±15.9 pmol/l. In the patients with hepatocellular damage due to metastatic tumours [Ca bronchus, carcinoid (n=6)], the 7B2-IR concentrations were significantly higher [185±36.9 pmol/l, (P<0.05)] compared with the overall subjects with liver damage. The results of the present study demonstrate that 7B2-IR is increased in liver disease, with the highest levels detected in patients with tumourous liver conditions.
Collapse
Affiliation(s)
- Maria S Venetikou
- Department of Medical Sciences, Faculty of Health and Caring Professions, Technological Educational Institute (TEI), Athens, Greece
| | | | | | | |
Collapse
|
17
|
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release 2012; 161:188-97. [PMID: 22370583 DOI: 10.1016/j.jconrel.2012.02.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 02/07/2023]
|
18
|
Lee M, Waser B, Reubi JC, Pellegata NS. Secretin receptor promotes the proliferation of endocrine tumor cells via the PI3K/AKT pathway. Mol Endocrinol 2012; 26:1394-405. [PMID: 22692904 DOI: 10.1210/me.2012-1055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Collapse
Affiliation(s)
- Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
19
|
Francis H, Alpini G, DeMorrow S. Recent advances in the regulation of cholangiocarcinoma growth. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1-9. [PMID: 20430870 PMCID: PMC2904122 DOI: 10.1152/ajpgi.00114.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholangiocarcinomas arise after the neoplastic transformation of the cholangiocytes that line the intra- and extrahepatic biliary epithelium. Symptoms usually do not present until late in the course of the disease, at which time they are relatively resistant to chemotherapeutic agents and as such are difficult to treat and display a poor prognosis. Because of the relative rarity of this disease, the overall volume of research into the molecular pathophysiology associated with this disease is small compared with other more prevalent tumors. However, the incidence of this devastating cancer is on the rise and renewed efforts to understand the pathogenesis of cholangiocarcinoma is needed to design novel therapeutic strategies to combat this disease. This review summarizes the recent advances into our knowledge and understanding of cholangiocarcinoma and highlights potential novel therapeutic strategies that may prove useful to treat this deadly disease.
Collapse
Affiliation(s)
- Heather Francis
- 2Digestive Disease Research Center and ,3Department of Research and Education, Scott & White Hospital; and
| | - Gianfranco Alpini
- 1Department of Internal Medicine, Texas A&M Health Science Center College of Medicine; ,2Digestive Disease Research Center and ,4Division of Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Sharon DeMorrow
- 1Department of Internal Medicine, Texas A&M Health Science Center College of Medicine; ,2Digestive Disease Research Center and
| |
Collapse
|
20
|
Onori P, Wise C, Gaudio E, Franchitto A, Francis H, Carpino G, Lee V, Lam I, Miller T, Dostal DE, Glaser SS. Secretin inhibits cholangiocarcinoma growth via dysregulation of the cAMP-dependent signaling mechanisms of secretin receptor. Int J Cancer 2010; 127:43-54. [DOI: 10.1002/ijc.25028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
21
|
Glaser S, Lam IP, Franchitto A, Gaudio E, Onori P, Chow BK, Wise C, Kopriva S, Venter J, White M, Ueno Y, Dostal D, Carpino G, Mancinelli R, Chiasson V, DeMorrow S, Francis H, Alpini G, Alpini G. Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology 2010; 52:204-14. [PMID: 20578263 PMCID: PMC3049759 DOI: 10.1002/hep.23657] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED During bile duct ligation (BDL), the growth of large cholangiocytes is regulated by the cyclic adenosine monophosphate (cAMP)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and is closely associated with increased secretin receptor (SR) expression. Although it has been suggested that SR modulates cholangiocyte growth, direct evidence for secretin-dependent proliferation is lacking. SR wild-type (WT) (SR(+/+)) or SR knockout (SR(-/-)) mice underwent sham surgery or BDL for 3 or 7 days. We evaluated SR expression, cholangiocyte proliferation, and apoptosis in liver sections and proliferating cell nuclear antigen (PCNA) protein expression and ERK1/2 phosphorylation in purified large cholangiocytes from WT and SR(-/-) BDL mice. Normal WT mice were treated with secretin (2.5 nmoles/kg/day by way of osmotic minipumps for 1 week), and biliary mass was evaluated. Small and large cholangiocytes were used to evaluate the in vitro effect of secretin (100 nM) on proliferation, protein kinase A (PKA) activity, and ERK1/2 phosphorylation. SR expression was also stably knocked down by short hairpin RNA, and basal and secretin-stimulated cAMP levels (a functional index of biliary growth) and proliferation were determined. SR was expressed by large cholangiocytes. Knockout of SR significantly decreased large cholangiocyte growth induced by BDL, which was associated with enhanced apoptosis. PCNA expression and ERK1/2 phosphorylation were decreased in large cholangiocytes from SR(-/-) BDL compared with WT BDL mice. In vivo administration of secretin to normal WT mice increased ductal mass. In vitro, secretin increased proliferation, PKA activity, and ERK1/2 phosphorylation of large cholangiocytes that was blocked by PKA and mitogen-activated protein kinase kinase inhibitors. Stable knockdown of SR expression reduced basal cholangiocyte proliferation. SR is an important trophic regulator sustaining biliary growth. CONCLUSION The current study provides strong support for the potential use of secretin as a therapy for ductopenic liver diseases.
Collapse
Affiliation(s)
- Shannon Glaser
- Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX, USA.
| | - Ian P Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Eugenio Gaudio
- Dept. Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - Paolo Onori
- Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Billy K Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Candace Wise
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Division of Research and Education, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Shelley Kopriva
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Julie Venter
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Mellanie White
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Yoshiyuki Ueno
- Div. Gastroenterol, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - David Dostal
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Guido Carpino
- Dept Health Science, University of Rome “Foro Italico”, Italy
| | - Romina Mancinelli
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Dept. Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - Valorie Chiasson
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Sharon DeMorrow
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Heather Francis
- Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Division of Research and Education, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | | |
Collapse
|
22
|
Abstract
Metabolic pathologies such as Type 2 Diabetes have become a major health problem for worldwide populations. Unfortunately, efforts to cure and especially to prevent these significant global problems have so far been met with disappointment. Recently, the involvement of the gut-derived hormonal dysregulation in the development of obesity-related disturbances has been intensively studied. For instance, studies of gut-derived peptides such as peptide YY 3-36, glucagon-like peptide-1, oxyntomodulin and, more recently, ghrelin have significantly improved our understanding of mechanisms underlying weight and metabolic regulation. Even though early reports of the existence of secretin, the first peptide hormone to be described, date back as far as 1825, so much and yet so little is still known about its physiological role in mammals, including humans. However, recent years have provided a better understanding of how the release of secretin is regulated by enteral secretagogues. On the other hand, most basic questions about its role in the post-prandial regulation of metabolic functions in normal and pathophysiological conditions remain to be elucidated. The present work intends to review the physiology of secretin along with its central and peripheral outcomes on metabolic functions.
Collapse
Affiliation(s)
- D H St-Pierre
- Division of Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, Ospedale Molinette, University of Turin, Turin, Italy
| | | |
Collapse
|
23
|
Abstract
Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial cells (i.e. cholangiocytes) as a common pathogenic target. Cholangiocyte cell death largely occurs through the process of apoptosis. In this review, we will summarize the mechanisms through which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic cholestasis induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury, and biliary atresia. Although we have increased our knowledge of the factors that regulate cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models, there is still a lack of effective treatment modalities for these biliary disorders. However, future studies will hopefully provide for new therapeutic modalities for the prevention or restoration of biliary mass and function lost during the progression of cholangiopathies.
Collapse
Affiliation(s)
- Fuquan Yang
- Department of Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | | | | | | | | | | |
Collapse
|
24
|
Wang H, Gao Y, Jin X, Xiao J. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis. Liver Int 2010; 30:126-38. [PMID: 19889080 DOI: 10.1111/j.1478-3231.2009.02151.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Hepatic progenitor cells (HPC), a cell compartment capable of differentiating into hepatocytic and biliary lineages, may give rise to the formation of intermediate hepatobiliary cells (IHBC) or ductular reactions (DR). AIMS The aim of this study was to analyse the gene expression profiles of DR in cirrhosis and further investigate novel proteins expressed by HPC and their intermediate progeny. METHODS DR in hepatitis B virus (HBV)-positive cirrhotic liver tissues adjacent to hepatocellular carcinoma and interlobular bile ducts (ILBDs) in normal liver tissues were isolated by laser capture microdissection and then subjected to microarray analysis. Differential gene expression patterns were verified by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry on serial sections. HPC and their intermediate progeny were recognized by immunostaining with hepatocytic and biliary markers [HepPar1, cytokeratin (CK)7, CK19, neural cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM)]. RESULTS A total of 88 genes showed upregulation in DR compared with ILBDs. Gene ontology analyses revealed that these upregulated genes were mostly associated with cell adhesion, immune response and the metabolic process. Contactin associated protein-like 2 (CNTNAP2) was first confirmed to be a novel protein expressed in a subpopulation of DR that was positive for CK7, NCAM or EpCAM. In addition, immunoreactivity for CNTNAP2 was also noted in a subset of isolated CK7-positive HPC as well as some ductular IHBC positive for CK19 and HepPar1 in DR. CONCLUSION CNTNAP2 is specifically associated with the emergence of ductular populations and may be identified as a novel protein for defining a subset of HPC and their intermediate progeny in cirrhosis.
Collapse
Affiliation(s)
- Huafeng Wang
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
25
|
Körner M, Waser B, Reubi JC, Miller LJ. CCK(2) receptor splice variant with intron 4 retention in human gastrointestinal and lung tumours. J Cell Mol Med 2009; 14:933-43. [PMID: 19627395 PMCID: PMC2888751 DOI: 10.1111/j.1582-4934.2009.00859.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wild-type cholecystokinin type 2 (CCK2) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK2 receptor with retention of intron 4 (CCK2Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK2 receptor, wild-type CCK2 receptor and CCK2Ri4sv with end-point and real-time RT-PCR, and for total CCK2 receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK2 receptor transcripts were found in the vast majority of tumours and normal tissues. CCK2Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK2 receptor negative tumours or any normal tissues tested. CCK2Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK2 receptor transcripts. In conclusion, the CCK2Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Collapse
Affiliation(s)
- Meike Körner
- Mayo Clinic, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona, USA.
| | | | | | | |
Collapse
|
26
|
Körner M, Miller LJ. Alternative splicing of pre-mRNA in cancer: focus on G protein-coupled peptide hormone receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:461-72. [PMID: 19574427 DOI: 10.2353/ajpath.2009.081135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.
Collapse
Affiliation(s)
- Meike Körner
- Institute of Pathology of the University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland.
| | | |
Collapse
|
27
|
Akgün E, Körner M, Gao F, Harkumar KG, Waser B, Reubi JC, Portoghese PS, Miller LJ. Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J Med Chem 2009; 52:2138-47. [PMID: 19271701 PMCID: PMC2666544 DOI: 10.1021/jm801439x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.
Collapse
Affiliation(s)
- Eyup Akgün
- University of Minnesota, Department of Medicinal Chemistry, College of Pharmacy, Minneapolis, MN 55455
| | - Meike Körner
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Fan Gao
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Kaleeckal G. Harkumar
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Beatrice Waser
- Institute of Pathology of the University of Berne, Division of Cell Biology and Experimental Cancer Research, 3010 Berne, Switzerland
| | - Jean Claude Reubi
- Institute of Pathology of the University of Berne, Division of Cell Biology and Experimental Cancer Research, 3010 Berne, Switzerland
| | - Philip S. Portoghese
- University of Minnesota, Department of Medicinal Chemistry, College of Pharmacy, Minneapolis, MN 55455
| | - Laurence J. Miller
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| |
Collapse
|
28
|
Körner MU, Hayes GM, Carrigan PE, Rehmann R, Miller LJ, Reubi JC. Wild-type and splice-variant secretin receptors in lung cancer: overexpression in carcinoid tumors and peritumoral lung tissue. Mod Pathol 2008; 21:387-95. [PMID: 18223557 DOI: 10.1038/modpathol.3801005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Collapse
Affiliation(s)
- Meike U Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology of the University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Lam IPY, Siu FKY, Chu JYS, Chow BKC. Multiple actions of secretin in the human body. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:159-90. [PMID: 18275888 DOI: 10.1016/s0074-7696(07)65004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of secretin initiated the field of endocrinology. Over the past century, multiple gastrointestinal functions of secretin have been extensively studied, and it was discovered that the principal function of this peptide in the gastrointestinal system is to facilitate digestion and to provide protection. In view of the late identification of secretin and the secretin receptor in various tissues, including the central nervous system, the pleiotropic functions of secretin have more recently been an area of intense focus. Secretin is a classical hormone, and recent studies clearly showed secretin's involvement in neural and neuroendocrine pathways, although the neuroactivity and neural regulation of its release are yet to be elucidated. This chapter reviews our current understanding of the pleiotropic actions of secretin with a special focus on the hormonal and neural interdependent pathways that mediate these actions.
Collapse
Affiliation(s)
- Ian P Y Lam
- Department of Zoology, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
30
|
Hayes GM, Carrigan PE, Dong M, Reubi JC, Miller LJ. A novel secretin receptor splice variant potentially useful for early diagnosis of pancreatic carcinoma. Gastroenterology 2007; 133:853-61. [PMID: 17678920 DOI: 10.1053/j.gastro.2007.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 06/11/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic and bile duct carcinomas represent highly aggressive malignancies that evolve from secretin receptor-rich ductular cells. With premessenger RNA splicing abnormalities common in cancer, we evaluated whether an abnormal secretin receptor spliceoform were present, characterized it, and developed a serum assay for it. METHODS Cancer cell lines and healthy and neoplastic tissue were studied by nested reverse-transcription polymerase chain reaction and sequencing. A promising spliceoform was isolated and characterized, and monoclonal antibodies were raised to 2 distinct regions. A dual antibody enzyme-linked immunosorbent assay was developed and applied to blinded serum samples from 26 patients with pancreatic carcinoma, 10 patients with chronic pancreatitis, and 14 controls. RESULTS Each of 9 pancreatic cancer specimens and no normal tissue expressed a secretin receptor variant with exons 3 and 4 deleted. This encoded a 111-residue peptide with its first 43 residues identical to wild-type receptor, but, subsequent to a shift in coding frame and early truncation, the next 68 residues were unique in the transcriptome/proteome. This nonfunctional soluble protein did not bind or signal in response to secretin and was secreted from transfected MiaPaCa-2 cells. Elevated serum levels of this variant were present in 69% of pancreatic cancer patients, 60% of chronic pancreatitis patients, and 1 of 14 controls. CONCLUSIONS We identified a novel abnormal spliceoform of the secretin receptor in pancreatic and bile duct cancers and developed a dual antibody sandwich enzyme-linked immunosorbent assay to measure it in the circulation. Initial application of this assay in patients with pancreatic cancer and chronic pancreatitis was promising, but additional validation will be required to evaluate its clinical utility.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Base Sequence
- Biomarkers/metabolism
- Case-Control Studies
- Cell Line
- Cell Line, Tumor
- Cholangiocarcinoma/diagnosis
- Cholangiocarcinoma/metabolism
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Molecular Sequence Data
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Pancreatitis, Chronic/diagnosis
- Pancreatitis, Chronic/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/immunology
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/immunology
- Receptors, Gastrointestinal Hormone/metabolism
Collapse
Affiliation(s)
- Gregory M Hayes
- Mayo Clinic, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|