1
|
Saito Y, Kuwahara Y, Yamamoto Y, Suzuki M, Fukumoto M, Yamamoto F. ddY Mice Fed 10% Fat Diet Exhibit High p27KIP Expression and Delayed Hepatocyte DNA Synthesis During Liver Regeneration. Metab Syndr Relat Disord 2018; 16:305-313. [DOI: 10.1089/met.2017.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yohei Saito
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yumi Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihiko Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare form of primary liver cancer that affects adolescents and young adults without underlying liver disease. Surgery remains the mainstay of therapy; however, most patients are either not surgical candidates or suffer from recurrence. There is no approved systemic therapy and the overall survival remains poor. Historically classified as a subtype of hepatocellular carcinoma (HCC), FLC has a unique clinical, histological, and molecular presentation. At the genomic level, FLC contains a single 400kB deletion in chromosome 19, leading to a functional DNAJB1-PRKACA fusion protein. In this review, we detail the recent advances in our understanding of the molecular underpinnings of FLC and outline the current knowledge gaps.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromosomes, Human, Pair 19
- Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
- Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism
- Gene Fusion
- Genetic Predisposition to Disease
- HSP40 Heat-Shock Proteins/genetics
- Humans
- Molecular Targeted Therapy
- Neoplasm Recurrence, Local
- Phenotype
- Protein Kinase Inhibitors/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Gadi Lalazar
- The Laboratory for Cellular Biophysics, The Rockefeller University, New York, New York
| | - Sanford M Simon
- The Laboratory for Cellular Biophysics, The Rockefeller University, New York, New York
| |
Collapse
|
3
|
Cell-autonomous decrease in proliferative competitiveness of the aged hepatocyte. J Hepatol 2015; 62:1341-8. [PMID: 25617502 DOI: 10.1016/j.jhep.2015.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/03/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The regenerative potential of the liver declines with age, this might be dependent on a decrease in the intensity of the stimulus and/or an increased refractoriness of the target. In the present study, we compared the in vivo growth capacity of young and old hepatocytes transplanted into the same host. METHODS We utilized the retrorsine (RS)-based model for liver repopulation, which provides a specific and effective stimulus for transplanted hepatocytes. Rats of the dipeptidyl-peptidase type IV (DPP-IV)-deficient strain were given RS and were injected with a mix of hepatocytes isolated from either a 2-month old or an 18-month old donor. To follow the fate of transplanted cells, they were each identified through a specific tag: young hepatocytes expressed the green fluorescent protein (GFP(+)), while those from old donors were DPP-IV-positive. RESULTS At 1 month post-transplantation, DPP-IV-positive clusters (derived from old donor) were consistently smaller than those GFP(+) (young donor); the cross sectional area of clusters was decreased by 50%, while the mean volume was reduced to 1/3. Furthermore, when 2/3 partial hepatectomy (PH) was performed, the S-phase response of old hepatocyte-derived clusters was only 30-40% compared to that observed in cluster originating from young hepatocytes. No markers of cell senescence were expressed in clusters of transplanted hepatocytes. CONCLUSIONS This is the first direct evidence in vivo that hepatocytes in the aged liver express a cell-autonomous decline in their replicative capacity and in their regenerative response to PH compared to those from a young animal.
Collapse
|
4
|
Kobayashi T, Saito Y, Ohtake Y, Maruko A, Yamamoto Y, Yamamoto F, Kuwahara Y, Fukumoto M, Fukumoto M, Ohkubo Y. Effect of aging on norepinephrine-related proliferative response in primary cultured periportal and perivenous hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G861-9. [PMID: 22837346 DOI: 10.1152/ajpgi.00081.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Norepinephrine (NE) amplifies the mitogenic effect of EGF in a rat liver through the adrenergic receptor coupled with G protein, Ghα. Ghα is also known as a transglutaminase 2 (TG2), whose cross-linking activity is implicated in hepatocyte growth. Recently, we found that NE-induced amplification of EGF-induced DNA synthesis in hepatocytes obtained from perivenous regions of liver is caused by inhibiting the downregulation of EGF receptor (EGFR) by TG2. In the present study, we investigated the effect of aging on NE-related proliferative response. Hepatocytes were obtained from the liver of 7- and 90-wk-old rats. To examine this in detail, periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) were isolated using the digitonin/collagenase perfusion technique. EGF or NE receptor binding was analyzed by Scatchard analysis. Changes in NE-induced DNA synthesis, G protein activity, and TG2 activity were measured. NE slightly potentiated [125I]EGF binding to EGFR, and EGF-induced DNA synthesis in PVH but not in PPH. [3H]NE binding studies indicated that PVH have a greater number of receptors than PPH, and that the number of receptors in both subpopulations increased with aging. NE-induced changes in G protein activity and TG2 activity in 90-wk-old rats were slight compared with 7-wk-old rats. These results suggest that NE results in a slight recovery effect on the age-related decline in EGF-induced DNA synthesis because of incomplete switching of the function from TG2 to Ghα.
Collapse
Affiliation(s)
- Tomonori Kobayashi
- Department of Radiopharmacy, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vinken M, de Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli MLZ, Vanhaecke T, Rogiers V. Modifications in Connexin Expression in Liver Development and Cancer. ACTA ACUST UNITED AC 2012; 19:55-62. [DOI: 10.3109/15419061.2012.712576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Takahashi H, Okamura D, Starr ME, Saito H, Evers BM. Age-dependent reduction of the PI3K regulatory subunit p85α suppresses pancreatic acinar cell proliferation. Aging Cell 2012; 11:305-14. [PMID: 22212451 DOI: 10.1111/j.1474-9726.2011.00787.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
7
|
Liver regeneration and aging: a current perspective. Curr Gerontol Geriatr Res 2011; 2011:526379. [PMID: 21912543 PMCID: PMC3170699 DOI: 10.1155/2011/526379] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Many organ systems exhibit significant age-related deficits, but,
based on studies in old rodents and elderly humans, the liver
appears to be relatively protected from such changes. A
remarkable feature of the liver is its capacity to regenerate its
mass following partial hepatectomy. Reports suggests that aging
compromises the liver's regenerative capacity, both in the
rate and to the extent the organ's original volume is
restored. There has been modest definitive information as to which
cellular and molecular mechanisms regulating hepatic regeneration
are affected by aging. Changes in hepatic sensitivity to growth
factors, for example, epidermal growth factor (EGF), appear to influence
regeneration in old animals. Studies have demonstrated (a) a 60%
decline in EGF binding to hepatocyte plasma membranes, (b) reduced
expression of the hepatic high affinity EGF receptor and (c) a
block between G1 and S-phases of the cell cycle in old rats
following EGF stimulation. Recent studies suggest that reduced
phosphorylation and dimerization of the EGF receptor, critical
steps in the activation of the extracellular signal-regulated
kinase pathway and subsequent cell proliferation are responsible.
Other studies have demonstrated that aging affects the
upregulation of a Forkhead Box transcription factor, FoxM1B, which
is essential for growth hormone-stimulated liver regeneration in
hepatectomized mice. Aging appears to compromise liver
regeneration by influencing several pathways, the result of which
is a reduction in the rate of regeneration, but not in the
capacity to restore the organ to its original volume.
Collapse
|
8
|
Suzuki A, Sakaguchi T, Inaba K, Suzuki S, Konno H. Impact of cell cycle disruption on impaired hepatic regeneration in aged livers with ischemic insult. J Surg Res 2010; 173:267-77. [PMID: 21109256 DOI: 10.1016/j.jss.2010.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/07/2010] [Accepted: 10/13/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND The number of elderly patients with hepatobiliary malignancies has increased with the steady growth of elderly population. However, the safety of major hepatectomy for elderly patients remains controversial. This study investigated the effect of aging on the hepatic regenerative response after partial resection of livers subjected to ischemic insult. METHODS Two-thirds hepatectomy following 1-h hepatic ischemia was performed in young (12-wk-old) and old (18-mo-old) rats under portosystemic shunt establishment by subcutaneous transposition of the spleen. RESULTS The survival rate 48 h after hepatectomy of the old rats was significantly lower (20%) than that of the young rats (53%), whereas all animals without hepatic ischemia were alive at 48 h. Hepatic necrosis and hepatocyte apoptosis during the early post-hepatectomy phase were more severe in the aged livers, which also showed delayed Akt activation. Liver mass restoration was significantly retarded in the old rats, despite higher plasma IL-6 levels, rapid and prolonged activation of hepatic STAT3, and increased hepatocyte nuclear cyclin D1 levels. In the young livers, cyclin E, which is essential for G1/S transition, and cyclin A, a marker of S phase, were observed in the nucleus from 24 h, reaching peaks 48 h after hepatectomy. In contrast, the old livers showed greatly delayed and decreased nuclear cyclin E and cyclin A levels. CONCLUSION Age-related reductions in the regenerative ability of ischemically damaged livers may be caused by cell cycle disruption at either the late G1 phase or the G1/S transition, despite increased cyclin D1 levels and compensatory IL-6/STAT3 activation.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | |
Collapse
|
9
|
Yamamoto Y, Usuda N, Oghiso Y, Kuwahara Y, Fukumoto M. The uneven irradiation of a target cell and its dynamic movement can mathematically explain incubation period for the induction of cancer by internally deposited radionuclides. HEALTH PHYSICS 2010; 99:388-393. [PMID: 20699702 DOI: 10.1097/hp.0b013e3181cd4153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Irradiation from internally deposited radionuclides induces malignant tumors. Ingested radionuclides accumulate in specific organs, which are irradiated over a lifelong period. Our aim is to elucidate why the development of malignant tumors requires long-term internal exposure, on the order of decades, despite the fact that irradiation is continuous over this period. Three major factors are considered to be responsible for the long incubation time in carcinogenesis caused by internally deposited alpha-emitters: uneven distribution of radionuclides, limited range of irradiation, and dynamic movement of tumor precursor cells. We hypothesized that target cells susceptible to malignant transformation may undergo one event by alpha particles and may then migrate outside of the range of alpha particles, thereby avoiding immediate induction of successive additional events that would lead to cell death or neoplastic changes. Based on this hypothesis, we further proposed a mathematical model to predict the relationship between dose rate and incubation period of tumors induced by internally deposited alpha-emitters. The function was non-linear and included terms of both direct and indirect radiation effects. It well fitted both human Th-ICC cases and rat Pu-induced lung cancer, suggesting that indirect radiation effects are independent from dose rate. The significance of parameters of the model is discussed.
Collapse
Affiliation(s)
- Yoichiro Yamamoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
10
|
Ohtake Y, Kobayashi T, Maruko A, Oh-Ishi N, Yamamoto F, Katoh S, Ohkubo Y. Norepinephrine modulates the zonally different hepatocyte proliferation through the regulation of transglutaminase activity. Am J Physiol Gastrointest Liver Physiol 2010; 299:G106-14. [PMID: 20448147 DOI: 10.1152/ajpgi.00365.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A neurotransmitter, norepinephrine (NE), amplifies the mitogenic effect of epidermal growth factor (EGF) in the liver by acting on the alpha(1)-adrenergic receptor coupled with G protein, Galpha(h). However, the molecular mechanism is not well understood. Galpha(h) is known as a transglutaminase 2 (TG2), a cross-linking enzyme implicated in hepatocyte proliferation. We investigated the effect of NE on EGF-induced cell proliferation and TG2 activity using hepatocytes isolated in periportal and perivenous regions of the liver, which differ in proliferative capacity. Periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) were isolated by the digitonin-collagenase perfusion technique. EGF or NE receptor binding was analyzed by Scatchard analysis. Changes in NE-induced DNA synthesis, EGF receptor (EGFR) dimerization and phosphorylation, and TG2 activity were measured. NE enhanced EGF-induced DNA synthesis, EGF-induced EGFR dimerization, and its phosphorylation in PVH but not in PPH. [(3)H]NE binding studies indicated that PVH was found to have a greater affinity and number of receptors than PPH. Furthermore, NE treatment decreased TG2 activity and increased phospholipase C activity in PVH although TG2 level showed no change. These results suggest that NE-induced amplification of EGF-induced DNA synthesis especially in PVH is caused by upregulation of EGFR activation through the switching of function from TG2 to Galpha(h).
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Radiopharmacy, Tohoku Pharmaceutical Univ., 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamamoto Y, Chikawa J, Uegaki Y, Usuda N, Kuwahara Y, Fukumoto M. Histological type of Thorotrast-induced liver tumors associated with the translocation of deposited radionuclides. Cancer Sci 2010; 101:336-40. [PMID: 19917057 PMCID: PMC11159450 DOI: 10.1111/j.1349-7006.2009.01401.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Exposure to internally deposited radionuclides is known to induce malignant tumors of various histological types. Thorotrast, a colloidal suspension of radioactive Thorium dioxide ((232)ThO(2)) that emits alpha-particles, was used as a radiographic contrast during World War II. Thorotrast is known to induce liver tumors, particularly intrahepatic cholangiocarcinoma (ICC) and angiosarcoma (AS), decades after injection. Therefore, patients injected with Thorotrast comprise a suitable study group to understand biological effects of internal ionizing radiation injury. Autoradiography and X-ray fluorescence spectrometry (XRF) were carried out on non-tumorous liver sections from Thorotrast-induced ICC (T-ICC) and Thorotrast-induced AS (T-AS). Autoradiography revealed that the slope of the regression line of the number of alpha tracks for the amount of deposited Thorium ((232)Th) was higher in non-tumorous parts of the liver with T-ICC than those with T-AS. XRF showed that the intensity ratio of Radium (Ra) to Thorium (Th) in non-tumorous liver tissue with T-ICC was significantly higher than that with T-AS. Furthermore, the mean (228)Ra/(232)Th radioactivity ratio at the time of death calculated was also significantly higher in T-ICC cases than in T-AS cases. These suggest that the metabolic behavior of radionuclides such as relocation and excretion, as well as the content of deposited radionuclides, is a major factor in determining the histological type of Thorotrast-induced liver tumors.
Collapse
Affiliation(s)
- Yoichiro Yamamoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Yamamoto Y, Usuda N, Takatsuji T, Kuwahara Y, Fukumoto M. Long Incubation Period for the Induction of Cancer by Thorotrast is Attributed to the Uneven Irradiation of Liver Cells at the Microscopic Level. Radiat Res 2009; 171:494-503. [DOI: 10.1667/rr1492.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Kamat A, Ghosh PM, Glover RL, Zhu B, Yeh CK, Choudhury GG, Katz MS. Reduced expression of epidermal growth factor receptors in rat liver during aging. J Gerontol A Biol Sci Med Sci 2008; 63:683-92. [PMID: 18693222 DOI: 10.1093/gerona/63.7.683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proliferative responsiveness of hepatocytes to epidermal growth factor (EGF) declines during aging. The role of EGF receptors in mediating age-dependent changes of EGF-induced mitogenic signaling in liver remains incompletely understood. We assessed EGF receptor expression levels in whole liver specimens as well as in freshly isolated and cultured hepatocytes from young adult and senescent Fischer 344 male rats. Hepatic EGF receptor messenger RNA and protein levels, and the number of high- and low-affinity receptor binding sites, decreased with aging. Ligand-induced EGF receptor activation, determined by receptor dimerization and tyrosine phosphorylation, was reduced in old animals in parallel with the age-related decline in receptor expression. Stimulation of the extracellular signal-regulated kinase pathway by EGF was also attenuated in hepatocytes from old animals. Our results implicate decreased expression of EGF receptors as a key determinant of reduced mitogenic signaling responsive to EGF stimulation of liver during aging.
Collapse
Affiliation(s)
- Amrita Kamat
- Geriatric Research Education and Clinical Center (182), Audie L Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|