1
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Tong XF, Zhao FQ, Ren YZ, Zhang Y, Cui YL, Wang QS. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 2018; 106:3292-3302. [DOI: 10.1002/jbm.a.36528] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Xiao-Fang Tong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Fa-Quan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Ying-Zong Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|
4
|
Ghosh S. Human regeneration: An achievable goal or a dream? J Biosci 2016; 41:157-65. [PMID: 26949097 DOI: 10.1007/s12038-016-9589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P.C. Road, Kolkata 700 009, India,
| |
Collapse
|
5
|
Pan X, Wang Y, Yu X, Li J, Zhou N, Du W, Zhang Y, Cao H, Zhu D, Chen Y, Li L. Establishment and characterization of an immortalized human hepatic stellate cell line for applications in co-culturing with immortalized human hepatocytes. Int J Med Sci 2015; 12:248-255. [PMID: 25678842 PMCID: PMC4323363 DOI: 10.7150/ijms.11002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. METHODS Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. RESULTS The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. CONCLUSIONS We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems.
Collapse
Affiliation(s)
- XiaoPing Pan
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yini Wang
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - XiaoPeng Yu
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - JianZhou Li
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ning Zhou
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - WeiBo Du
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - YanHong Zhang
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - HongCui Cao
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - DanHua Zhu
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yu Chen
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - LanJuan Li
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
6
|
Lewandowska-Szumiel M, Kalaszczynska I. Promising perspectives towards regrowing a human arm. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2651-2657. [PMID: 24077995 PMCID: PMC3825636 DOI: 10.1007/s10856-013-5048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Despite the great enthusiasm about tissue engineering during the 1980s and the many significant basic observations made since then, the clinical application of tissue-engineered products has been limited. However, the prospect of creating new human tissues and organs is still exciting and continues to be a significant challenge for scientists and clinicians. A human arm is an extremely complicated biological construction. Considering regrowing a human arm requires asking about the current state-of-the-art of tissue engineering and the real capabilities that it may offer within a realistic time horizon. This work briefly addresses the state-of-the-art in the fields of cells and scaffolds that have high regenerative potential. Additional tools that are required to reconstruct more complex parts of the body, such as a human arm, seem achievable with the already available more sophisticated culture systems including three-dimensional organization, dynamic conditions and co-cultures. Finally, we present results on cell differentiation and cell and tissue maturation in culture when cells are exposed to mechanical forces. We postulate that in the foreseeable future even such complicated structures such as a human arm will be regrown in full in vitro under the conditions of a mechanically controlled co-culture system.
Collapse
Affiliation(s)
- Malgorzata Lewandowska-Szumiel
- Tissue Engineering Lab, Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Ilona Kalaszczynska
- Tissue Engineering Lab, Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Abstract
Liver transplantation offers a definitive cure for many liver and metabolic diseases. However, the complex invasive procedure and paucity of donor liver graft organs limit its clinical applicability. Liver stem cells provide a potentially limitless source of cells that would be useful for a variety of clinical applications. These stem cells or hepatocytes generated from them can be used in cellular transplantation, bioartificial liver devices and drug testing in the development of new drugs. In this chapter, we review the technical aspects of clinical applications of liver stem cells and the progress made to date in the clinical setting. The difficulties and challenges of realizing the potential of these cells are discussed.
Collapse
|
8
|
Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 2011; 173:e11-25. [PMID: 22099595 DOI: 10.1016/j.jss.2011.09.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND New bioartificial liver devices are needed to supplement the limited supply of organ donors available for patients with end-stage liver disease. Here, we report the results of a pilot study aimed at developing a humanized porcine liver by transplanting second trimester human fetal hepatocytes (Hfh) co-cultured with fetal stellate cells (Hfsc) into the decellularized matrix of a porcine liver. MATERIAL AND METHODS Ischemic livers were removed from 19 Yorkshire swine. Liver decellularization was achieved by an anionic detergent (SDS). The decellularized matrix of three separate porcine liver matrices was seeded with 3.5 × 10(8) and 1 × 10(9) of Hfsc and Hfh, respectively, and perfused for 3, 7, and 13 d. The metabolic and synthetic activities of the engrafted cells were assessed during and after perfusion. RESULTS Immunohistologic examination of the decellularized matrix showed removal of nuclear materials with intact architecture and preserved extracellular matrix (ECM) proteins. During perfusion of the recellularized matrices, measurement of metabolic parameters (i.e., oxygen concentration, glucose consumption, and lactate and urea production) indicated active metabolism. The average human albumin concentration was 29.48 ± 7.4 μg/mL. Immunohistochemical analysis revealed cell differentiation into mature hepatocytes. Moreover, 40% of the engrafted cells were actively proliferating, and less than 30% of cells were apoptotic. CONCLUSION We showed that our decellularization protocol successfully removed the cellular components of porcine livers while preserving the native architecture and most ECM protein. We also demonstrated the ability of the decellularized matrix to support and induce phenotypic maturation of engrafted Hfh in a continuously perfused system.
Collapse
Affiliation(s)
- Omar Barakat
- Department of Hepatobiliary and Transplantation Surgery, St. Luke's Episcopal Hospital, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ring A, Gerlach J, Peters G, Pazin BJ, Minervini CF, Turner ME, Thompson RL, Triolo F, Gridelli B, Miki T. Hepatic Maturation of Human Fetal Hepatocytes in Four-Compartment Three-Dimensional Perfusion Culture. Tissue Eng Part C Methods 2010; 16:835-45. [DOI: 10.1089/ten.tec.2009.0342] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alexander Ring
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitäts Medizin Berlin, Division of Experimental Surgery, Berlin, Germany
| | - Jörg Gerlach
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grant Peters
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin J. Pazin
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Crescenzio F. Minervini
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Fabio Triolo
- Regenerative Medicine and Cell Therapy Unit, ISMETT—Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Bruno Gridelli
- Regenerative Medicine and Cell Therapy Unit, ISMETT—Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Toshio Miki
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Dollé L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA, Geerts A. The quest for liver progenitor cells: a practical point of view. J Hepatol 2010; 52:117-29. [PMID: 19913937 DOI: 10.1016/j.jhep.2009.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chronic liver diseases can lead to hepatic dysfunction with organ failure. At present, orthotopic liver transplantation represents the benchmark therapy of terminal liver disease. However this practice is limited by shortage of donor grafts, the need for lifelong immunosuppression and very demanding state-of-the-art surgery. For this reason, new therapies have been developed to restore liver function, primarily in the form of hepatocyte transplantation and artificial liver support devices. While already offered in very specialized centers, both of these modalities still remain experimental. Recently, liver progenitor cells have shown great promise for cell therapy, and consequently they have attracted a lot of attention as an alternative or supportive tool for liver transplantation. These liver progenitor cells are quiescent in the healthy liver and become activated in certain liver diseases in which the regenerative capacity of mature hepatocytes and/or cholangiocytes is impaired. Although reports describing liver progenitor cells are numerous, they have not led to a consensus on the identity of the liver progenitor cell. In this review, we will discuss some of the characteristics of these cells and the different ways that have been used to obtain these from rodents. We will also highlight the challenges that researchers are facing in their quest to identify and use liver progenitor cells.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Cell Biology, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang C, Chia SM, Ong SM, Zhang S, Toh YC, van Noort D, Yu H. The controlled presentation of TGF-β1 to hepatocytes in a 3D-microfluidic cell culture system. Biomaterials 2009; 30:3847-53. [DOI: 10.1016/j.biomaterials.2009.03.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 03/29/2009] [Indexed: 12/18/2022]
|