1
|
Wang J, Du J, Song Y, Tan X, Wu J, Wang T, Shi Y, Xu X, Yu Z, Song B. CILP1 interacting with YBX1 promotes hypertrophic scar formation by suppressing PPARs transcription. Cell Death Dis 2025; 16:371. [PMID: 40346063 PMCID: PMC12064789 DOI: 10.1038/s41419-025-07554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
Hypertrophic scar (HS) represents the most prevalent form of skin fibrosis, significantly impacting the quality of life. Despite this, the molecular mechanisms driving HS formation remain largely undefined, impeding the development of effective treatments. The study showed that Cartilage Intermediate Layer Protein 1 (CILP1) was predominantly expressed in myofibroblasts and was up-regulated in various forms of skin fibrosis, including human hypertrophic and keloid scars, and in animal models of HS. Notably, we detected elevated serum levels of CILP1 in fifty-two patients with HS compared to twenty healthy individuals, suggesting its potential as a novel biomarker. The findings indicated that CILP1 was involved in a negative feedback loop with TGF-β and inhibited the transcription of Peroxisome Proliferator-Activated Receptors (PPARs) via interaction with Y-box-binding protein 1 (YBX1). This interaction promoted cell proliferation, migration, and collagen production in hypertrophic scar fibroblasts (HSFs). In vivo studies further confirmed that CILP1 knockdown markedly reduced HS formation, whereas administration of recombinant human CILP1 protein exacerbated it. These discoveries illuminated the CILP1-YBX1-PPARs signaling pathway as a key regulator of HS formation, offering a foundation for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Junzheng Wu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| |
Collapse
|
2
|
Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H. Targeting extracellular matrix stiffness for cancer therapy. Front Immunol 2024; 15:1467602. [PMID: 39697341 PMCID: PMC11653020 DOI: 10.3389/fimmu.2024.1467602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The physical characteristics of the tumor microenvironment (TME) include solid stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration of immune killer cells to the tumor site, and contribute to tumor resistance to immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of drugs and immune cells can offer a powerful support and opportunities to improve the immunotherapy efficacy in solid tumors. In this review, we discuss the mechanical properties of tumors, the impact of a stiff TME on tumor cells and immune cells, and the strategies to modulate tumor mechanics.
Collapse
Affiliation(s)
- Xiuqin Feng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fujun Cao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangji Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang J, Du J, Wang Y, Song Y, Wu J, Wang T, Yu Z, Song B. CILP2 promotes hypertrophic scar through Snail acetylation by interaction with ACLY. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167202. [PMID: 38670440 DOI: 10.1016/j.bbadis.2024.167202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND & AIMS Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Junzheng Wu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Noom A, Sawitzki B, Knaus P, Duda GN. A two-way street - cellular metabolism and myofibroblast contraction. NPJ Regen Med 2024; 9:15. [PMID: 38570493 PMCID: PMC10991391 DOI: 10.1038/s41536-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue fibrosis is characterised by the high-energy consumption associated with myofibroblast contraction. Although myofibroblast contraction relies on ATP production, the role of cellular metabolism in myofibroblast contraction has not yet been elucidated. Studies have so far only focused on myofibroblast contraction regulators, such as integrin receptors, TGF-β and their shared transcription factor YAP/TAZ, in a fibroblast-myofibroblast transition setting. Additionally, the influence of the regulators on metabolism and vice versa have been described in this context. However, this has so far not yet been connected to myofibroblast contraction. This review focuses on the known and unknown of how cellular metabolism influences the processes leading to myofibroblast contraction and vice versa. We elucidate the signalling cascades responsible for myofibroblast contraction by looking at FMT regulators, mechanical cues, biochemical signalling, ECM properties and how they can influence and be influenced by cellular metabolism. By reviewing the existing knowledge on the link between cellular metabolism and the regulation of myofibroblast contraction, we aim to pinpoint gaps of knowledge and eventually help identify potential research targets to identify strategies that would allow switching tissue fibrosis towards tissue regeneration.
Collapse
Affiliation(s)
- Anne Noom
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Birgit Sawitzki
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University of Berlin, 13353, Berlin, Germany
- Center of Immunomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
5
|
Pringle TA, Ramon-Gil E, Leslie J, Oakley F, Wright MC, Knight JC, Luli S. Synthesis and preclinical evaluation of a 89Zr-labelled human single chain antibody for non-invasive detection of hepatic myofibroblasts in acute liver injury. Sci Rep 2024; 14:633. [PMID: 38182623 PMCID: PMC10770171 DOI: 10.1038/s41598-023-50779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Synaptophysin is expressed on fibrogenic hepatic myofibroblasts. C1-3 is a single chain human antibody (scAb) that binds specifically to synaptophysin on hepatic myofibroblasts, providing a targeting vector for novel in vivo imaging agents of chronic liver disease. C1-3 and a negative control scAb, CSBD9, were radiolabelled with zirconium-89 via desferrioxamine chelation to enable non-invasive molecular imaging with positron emission tomography (PET). DFO-scAb conjugates were characterised by gel electrophoresis (SDS-PAGE) and MALDI-TOF spectrometry, and 89Zr-labelled with high radiolabelling efficiency (99%). [89Zr]Zr-DFO-C1-3 exhibited high in vitro stability (> 99%) in mouse and human sera over 3 days at 25 and 37 °C. Activated hepatic myofibroblasts incubated with [89Zr]Zr-DFO-C1-3 displayed significantly higher internalised activity (59.46%, P = 0.001) compared to the [89Zr]Zr-DFO-CSBD9 control, indicating synaptophysin-mediated uptake and high binding specificity of [89Zr]Zr-DFO-C1-3. Mice with CCl4-induced acute liver damage exhibited significantly higher liver uptake of [89Zr]Zr-DFO-C1-3, compared to controls, confirmed by both Cerenkov imaging and ex vivo gamma counting (4.41 ± 0.19%ID/g, P < 0.0001). CCl4-induced liver damage and the number of hepatic myofibroblasts was confirmed by αSMA staining of liver sections. These findings indicate that [89Zr]Zr-DFO-C1-3 has promising utility as a PET imaging agent for non-invasive detection of hepatic myofibroblasts following acute liver injury.
Collapse
Affiliation(s)
- Toni A Pringle
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Wright
- Liver Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James C Knight
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK.
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Medical School, Newcastle University, 4th Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
6
|
Wu X, Zhu Y, Guo Y, Zhao Z, Li Z. Grb2-related adaptor protein GRAP is a novel regulator of liver fibrosis. Life Sci 2023; 327:121861. [PMID: 37343720 DOI: 10.1016/j.lfs.2023.121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
AIMS Excessive liver fibrosis is frequently observed in chronic liver diseases and associated with decline of liver functions. Hepatic stellate cells (HSCs) are considered the principal mediator of liver fibrosis by trans-differentiating into myofibroblasts. In the present study we investigated the role of Grb2-related adaptor protein (GRAP) in HSC activation and liver fibrosis. METHODS AND MATERIALS Liver fibrosis was induced by carbon tetrachloride (CCl4) injection. Gene expression was examined by quantitative PCR. Cell proliferation was evaluated by EdU incorporation. DNA-protein interaction was examined by chromatin immunoprecipitation (ChIP). KEY FINDINGS GRAP expression was up-regulated during HSC-myofibroblast transition both in vivo and in vitro. Mechanistically, serum response factor (SRF) and myocardin-related transcription factor A (MRTF-A) formed a complex to bind to the GRAP promoter and activate GRAP transcription. Small interfering RNA (siRNA) mediated GRAP silencing blocked HSC-myofibroblast transition in vitro. Importantly, adeno-associated virus 6 (AAV6) mediated GRAP knockdown in myofibroblasts attenuated liver fibrosis in mice. Of note, inhibition of ERK signaling abrogated enhancement of HSC-myofibroblast transition by GRAP over-expression. SIGNIFICANCE Our data suggest that GRAP, possibly via ERK activation, regulates HSC-myofibroblast transition and contributes to liver fibrosis. Screening for small-molecule GRAP inhibitors may yield novel therapeutic solutions against liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Zhigang Zhao
- Department of Rehabilitation, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zheng Li
- Department of Rehabilitation, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
7
|
Trinh VQH, Lee TF, Lemoinne S, Ray KC, Ybanez MD, Tsuchida T, Carter JK, Agudo J, Brown BD, Akat KM, Friedman SL, Lee YA. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci Signal 2023; 16:eadf6696. [PMID: 37253090 PMCID: PMC10367116 DOI: 10.1126/scisignal.adf6696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.
Collapse
Affiliation(s)
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Sara Lemoinne
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Kevin C. Ray
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Maria D. Ybanez
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Takuma Tsuchida
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - James K. Carter
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Judith Agudo
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kemal M. Akat
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| |
Collapse
|
8
|
Chao H, Zheng L, Hsu P, He J, Wu R, Xu S, Zeng R, Zhou Y, Ma H, Liu H, Tang Q. IL-13RA2 downregulation in fibroblasts promotes keloid fibrosis via JAK/STAT6 activation. JCI Insight 2023; 8:157091. [PMID: 36757802 PMCID: PMC10070111 DOI: 10.1172/jci.insight.157091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Keloids are considered the manifestation of a fibroproliferative disease characterized by chronic inflammation that is induced following skin injury. Deciphering the underlying mechanism of keloid formation is essential for improving treatment outcomes. Here, we found that more macrophages were activated toward the M2 subtype in keloid dermis when compared with normal dermis. Western blotting revealed that the level of phosphorylated STAT6 (p-STAT6), a known inducer of M2 polarization, was higher in keloid fibroblasts as opposed to fibroblasts from normal dermis. Moreover, keloid fibrosis was shown to be positively correlated with the level of p-STAT6. Further, we identified downregulation of IL-13RA2, a decoy receptor for IL-13, in keloid fibroblasts compared with fibroblasts from normal dermis. Ectopic expression of IL-13RA2 in keloid fibroblasts resulted in inhibition of STAT6 phosphorylation, cell proliferation, migration, invasion, extracellular matrix secretion, and myofibroblast marker expression, as well as an increase in apoptosis. Consistently, knockdown of IL-13RA2 in normal fibroblasts induced a keloidal status. Furthermore, both in vitro application and intratumoral injection of p-STAT6 inhibitor AS1517499 in a patient-derived xenograft keloid-implantation mouse model resulted in proliferation inhibition and tissue necrosis, apoptosis, and myofibroblast marker reduction. Collectively, this study elucidates the key role of IL-13RA2 in keloid pathology and inspires further translational research of keloid treatment concerning JAK/STAT6 inhibition.
Collapse
Affiliation(s)
- Hua Chao
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Pojui Hsu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyun He
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqia Xu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruixi Zeng
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhou
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huisi Ma
- Department of Pathology, Foshan Women and Children's Hospital, Foshan, China
| | - Haibo Liu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Tang
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
He ZQ, Yuan XW, Lu ZB, Li YH, Li YF, Liu X, Wang L, Zhang Y, Zhou Q, Li W. Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts. FUNDAMENTAL RESEARCH 2022; 2:37-47. [PMID: 38933917 PMCID: PMC11197686 DOI: 10.1016/j.fmre.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Fibrosis can occur in almost all tissues and organs and affects normal physiological function, which may have serious consequences, such as organ failure. However, there are currently no effective, broad-spectrum drugs suitable for clinical application. Revealing the process of fibrosis is an important prerequisite for the development of new therapeutic targets and drugs. Studies have shown that the limiting of myofibroblast activation or the promoting of their elimination can ameliorate fibrosis. However, it has not been reported whether a direct decrease in cell contraction can inhibit fibrosis in vivo. Here, we have shown that (-)-blebbistatin (Ble), a non-muscle myosin Ⅱ inhibitor, displayed significant inhibition of liver fibrosis in different chronic injury mouse models in vivo. We found that Ble reduced the stiffness of fibrotic tissues from the early stage, which reduced the extent of myofibroblast activation induced by a stiffer extracellular matrix (ECM). Moreover, Ble also reduced the activation of myofibroblasts induced by TGF-β1, which is the most potent pro-fibrotic cytokine. Mechanistically, Ble reduced mechanical contraction, which inhibited the assembly of stress fibers, decreased the F/G-actin ratio, and led to the exnucleation of YAP1 and MRTF-A. Finally, we verified its broad-spectrum antifibrotic effect in multiple models of organ fibrosis. Our results highlighted the important role of mechanical contraction in myofibroblast activation and maintenance, rather than just a characteristic of activation, suggesting that it may be a potential target to explore broad-spectrum drugs for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng-Quan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Wei Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Zong-Bao Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Huan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The First Hospital of Jilin University, Changchun Jilin 130021, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
12
|
Norouzi-Barough L, Bayat A. Validation strategies for identifying drug targets in dermal fibrotic disorders. Drug Discov Today 2021; 26:2474-2485. [PMID: 34229083 DOI: 10.1016/j.drudis.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Fibrotic skin disorders, such as keloid disease (KD), are common clinically challenging disorders with unknown etiopathogenesis and ill-defined treatment strategies that affect millions of people worldwide. Thus, there is an urgent need to discover novel therapeutics. The validation of potential drug targets is an obligatory step in discovering and developing new therapeutic agents for the successful treatment of dermal fibrotic conditions, such as KD. The integration of multi-omics data with traditional and modern technological approaches, such as RNA interference (RNAi) and genome-editing tools, would provide unique opportunities to identify and validate novel targets in KD during early drug development. Thus, in this review, we summarize the current and emerging drug discovery process with a focus on validation strategies of potential drug targets identified in dermal fibrosis.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Medical Research Council-Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
13
|
Poelstra K. Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43152-020-00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose of Review
Treatment of liver fibrosis benefits from hepatic stellate cell (HSC)-specific delivery. Since the description of first carrier to HSC, many developments have taken place in this area. The purpose is to give an overview of the different carriers and homing moieties that are available for HSC targeting and illustrate the opportunities and hurdles they provide.
Recent Findings
There is a growing number of homing devices to deliver drugs to HSC, and options to deliver siRNA to HSC have emerged. Other developments include controlling corona formation, development of linker technology, and design of theranostic approaches. We are on the eve of reaching the clinic with innovative HSC-specific compounds.
Summary
An overview of different core molecules is presented together with an overview of targeting strategies toward different receptors on HSC, providing a versatile toolbox. Many therapeutics, ranging from small chemical entities and proteins to RNA- or DNA-modulating substances, have already been incorporated in these constructs in the recent years.
Collapse
|
14
|
Xu T, Lu Z, Xiao Z, Liu F, Chen Y, Wang Z, Zhu S, Song Y. Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-ɑvβ6 integrin in liver fibrosis. Cell Death Dis 2020; 11:199. [PMID: 32251270 PMCID: PMC7090046 DOI: 10.1038/s41419-020-2372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Hepatocytes undergo the metaplasia into ductal biliary epithelial cells (BECs) in response to chronic injury, and subsequently contribute to liver regeneration. The mechanism underlying hepatocyte-to-ductal metaplasia has not been explored until now. In mouse models of liver fibrosis, a florid BEC response was observed in fibrotic liver, and the depletion of myofibroblasts attenuated BEC expansion remarkably. Then, in hepatocyte fate-tracing mouse model, we demonstrated the conversion of mature hepatocytes into ductal BECs in fibrotic liver, and the depletion of myofibroblasts diminished the hepatocyte-to-ductal metaplasia. Finally, the mechanism underlying the metaplasia was investigated. Myofibroblasts secreted laminin-rich extracellular matrix, and then laminin induced hepatocyte-to-ductal metaplasia through ɑvβ6 integrin. Therefore, our results demonstrated myofibroblasts induce the conversion of mature hepatocytes into ductal BECs through laminin-ɑvβ6 integrin, which reveals that the strategy improve regeneration in fibrotic liver through the modification of specific microenvironment.
Collapse
Affiliation(s)
- Ting Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhiwen Lu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuhua Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shenghua Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
15
|
Young GR, Abdelghany TM, Leitch AC, Dunn MP, Blain PG, Lanyon C, Wright MC. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids. PLoS One 2020; 15:e0229745. [PMID: 32163446 PMCID: PMC7067480 DOI: 10.1371/journal.pone.0229745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans.
Collapse
Affiliation(s)
- Gregory R. Young
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, United Kingdom
| | - Tarek M. Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Alistair C. Leitch
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Michael P. Dunn
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Peter G. Blain
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Clare Lanyon
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, United Kingdom
| | - Matthew C. Wright
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| |
Collapse
|
16
|
Li G, Lin J, Peng Y, Qin K, Wen L, Zhao T, Feng Q. Curcumol may reverse early and advanced liver fibrogenesis through downregulating the uPA/uPAR pathway. Phytother Res 2020; 34:1421-1435. [PMID: 31989700 DOI: 10.1002/ptr.6616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 01/18/2023]
Abstract
Previous studies have suggested strong antifibrotic activity of curcumol in the liver; the underlying mechanisms of which, however, remain largely unknown. Aiming to investigate the role of curcumol in regulating early and advanced liver fibrosis, we designed a rat model with advanced liver fibrosis and cell model with an initial fibrotic stage. Model rats induced by CCl4 and alcohol presented advanced liver fibrosis with complete fibrous septa. The administration of curcumol (25 mg/kg or 50 mg/kg) resulted in reversal of liver fibrosis. Leptin-administrated liver sinusoidal endothelial cells presented defenestration and basement membrane components deposition, including laminin (LN) and type IV collagen (Col IV), the characteristics of capillarization by scanning electron microscopy and immunofluorescence assays. After treatment with curcumol (12.5, 25, or 50 mg/L), defenestration was restored and the levels of LN and Col IV were decreased, consistent with the rat model. Quantitative polymerase chain reaction and Western blot results revealed that increased levels of urokinase plasminogen activator (uPA)/ uPA receptor (uPAR) were observed both in vivo and in vitro, curcumol significantly reduced uPA/uPAR at both the mRNA and protein levels. Reduction of uPA/uPAR may be synergistic with matrix metallopeptidase 13 to reverse liver fibrogenesis. In conclusion, curcumol protects liver from phenotypic changes in the early and advanced fibrogenesis, possibly through uPA/uPAR pathway.
Collapse
Affiliation(s)
- Guiyu Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiyong Lin
- Traditional Chinese Medicine Department, Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yue Peng
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Kefeng Qin
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tiejian Zhao
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Zhai X, Wang W, Dou D, Ma Y, Gang D, Jiang Z, Shi B, Jin B. A novel technique to prepare a single cell suspension of isolated quiescent human hepatic stellate cells. Sci Rep 2019; 9:12757. [PMID: 31485000 PMCID: PMC6726602 DOI: 10.1038/s41598-019-49287-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023] Open
Abstract
To explore a simple and easy-to-learn procedure for the isolation of human quiescent hepatic stellate cells (HSCs) that requires no advanced training. Thus reducing costs and increasing efficiency. This protocol will provide sufficient primary cells with minimal contaminants for future basic research on diseases associated with human HSCs. Normal liver tissues were isolated from patients undergoing hepatic hemangioma resection, and a single cell suspension of these tissues was prepared using the Gentle MACS tissue processor. By using this method, the difficulty of the procedure was reduced, fewer cells were lost during the preparation treatments, and the maximal activity of single cells was maintained. Following preparation of the cell suspension, the HSCs were further isolated using a Nycodenz density gradient. Cell viability was examined by trypan blue staining, and the purity of the quiescent human HSCs was determined by autofluorescence and oil red O staining. Activated and quiescent human HSCs were identified using immunofluorescence and Western blotting. The cell cycle distribution in activated and quiescent human HSCs was analyzed by flow cytometry.The recovery rate of the HSCs was approximately (2.1 ± 0.23) × 106 of tissue, with 94.43 ± 1.89% cell viability and 93.8 ± 1.52% purity. The technique used in this study is a simple, high-yield, and repeatable method for HSC isolation that is worthy of recommendation.
Collapse
Affiliation(s)
- Xiangyu Zhai
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China
| | - Wei Wang
- School of medicine, Shandong University, Jinan, China
| | - Dandan Dou
- School of basic medical sciences, Shandong University, Jinan, China
| | - Yunlong Ma
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China
| | - Du Gang
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China
| | - Zhengchen Jiang
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China
| | - Binyao Shi
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China
| | - Bin Jin
- Department of general surgery, Qilu hospital of Shandong University, Jinan, China.
| |
Collapse
|
18
|
Chen Z, Jain A, Liu H, Zhao Z, Cheng K. Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. J Pharmacol Exp Ther 2019; 370:695-702. [PMID: 30886124 PMCID: PMC6806344 DOI: 10.1124/jpet.118.256156] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is caused by excessive accumulation of extracellular matrix during chronic liver injuries. Although clinical evidence suggests that liver fibrosis can be reversed, there is no standard therapy for liver fibrosis. Moreover, there is a lack of diagnostic tools to detect early-stage liver fibrosis. Activation of hepatic stellate cells (HSCs) is the key step during liver fibrogenesis, and its mechanism has been extensively studied by various cell culture and animal models. Targeted delivery of therapeutic agents to activated HSCs is therefore critical for the successful treatment of liver fibrosis. A number of protein markers have been found to be overexpressed in activated HSCs, and their ligands have been used to specifically deliver various antifibrotic agents. In this review, we summarize these HSC-specific protein markers and their ligands for targeted delivery of antifibrotic agents.
Collapse
Affiliation(s)
- Zhijin Chen
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Akshay Jain
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Hao Liu
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
19
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
20
|
Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med 2018; 10:10/422/eaao0475. [DOI: 10.1126/scitranslmed.aao0475] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Tissues stiffen during aging and during the pathological progression of cancer, fibrosis, and cardiovascular disease. Extracellular matrix stiffness is emerging as a prominent mechanical cue that precedes disease and drives its progression by altering cellular behaviors. Targeting extracellular matrix mechanics, by preventing or reversing tissue stiffening or interrupting the cellular response, is a therapeutic approach with clinical potential. Major drivers of changes to the mechanical properties of the extracellular matrix include phenotypically converted myofibroblasts, transforming growth factor β (TGFβ), and matrix cross-linking. Potential pharmacological interventions to overcome extracellular matrix stiffening are emerging clinically. Aside from targeting stiffening directly, alternative approaches to mitigate the effects of increased matrix stiffness aim to identify and inhibit the downstream cellular response to matrix stiffness. Therapeutic interventions that target tissue stiffening are discussed in the context of their limitations, preclinical drug development efforts, and clinical trials.
Collapse
|
21
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|
22
|
Inhibition of FKBP10 Attenuates Hypertrophic Scarring through Suppressing Fibroblast Activity and Extracellular Matrix Deposition. J Invest Dermatol 2017; 137:2326-2335. [DOI: 10.1016/j.jid.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
23
|
Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, Page A, Moran Salvador E, Sharkey V, Tsukamoto H, Chu DCK, Singh US, Ponzoni M, Perri P, Di Paolo D, Mendivil EJ, Mann J, Mann DA. A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Mol Ther 2017; 25:218-231. [PMID: 28129116 PMCID: PMC5363305 DOI: 10.1016/j.ymthe.2016.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
The progression of fibrosis in chronic liver disease is dependent upon hepatic stellate cells (HSCs) transdifferentiating to a myofibroblast-like phenotype. This pivotal process is controlled by enzymes that regulate histone methylation and chromatin structure, which may be targets for developing anti-fibrotics. There is limited pre-clinical experimental support for the potential to therapeutically manipulate epigenetic regulators in fibrosis. In order to learn if epigenetic treatment can halt the progression of pre-established liver fibrosis, we treated mice with the histone methyltransferase inhibitor 3-deazaneplanocin A (DZNep) in a naked form or by selectively targeting HSC-derived myofibroblasts via an antibody-liposome-DZNep targeting vehicle. We discovered that DZNep treatment inhibited multiple histone methylation modifications, indicative of a broader specificity than previously reported. This broad epigenetic repression was associated with the suppression of fibrosis progression as assessed both histologically and biochemically. The anti-fibrotic effect of DZNep was reproduced when the drug was selectively targeted to HSC-derived myofibroblasts. Therefore, the in vivo modulation of HSC histone methylation is sufficient to halt progression of fibrosis in the context of continuous liver damage. This discovery and our novel HSC-targeting vehicle, which avoids the unwanted effects of epigenetic drugs on parenchymal liver cells, represents an important proof-of-concept for epigenetic treatment of liver fibrosis.
Collapse
Affiliation(s)
- Müjdat Zeybel
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Saimir Luli
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Sabater
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Timothy Hardy
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Oakley
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Eva Moran Salvador
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Victoria Sharkey
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90033, USA
| | - David C K Chu
- The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Uma Sharan Singh
- The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Mirco Ponzoni
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Patrizia Perri
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Daniela Di Paolo
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Edgar J Mendivil
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, 44100 Guadalajara, Mexico
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
24
|
Ramachandran P, Henderson NC. Antifibrotics in chronic liver disease: tractable targets and translational challenges. Lancet Gastroenterol Hepatol 2016; 1:328-340. [PMID: 28404203 DOI: 10.1016/s2468-1253(16)30110-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Chronic liver disease prevalence is increasing globally. Iterative liver damage, secondary to any cause of liver injury, results in progressive fibrosis, disrupted hepatic architecture, and aberrant regeneration, which are defining characteristics of liver cirrhosis. Liver transplantation is an effective treatment for end-stage liver disease; however, demand greatly outweighs donor organ supply, and in many parts of the world liver transplantation is unavailable. Hence, effective antifibrotic therapies are urgently required. In the past decade, rapid progress has been made in our understanding of the pathophysiology of liver fibrosis and a large number of potential cellular and molecular antifibrotic targets have been identified. This has led to numerous clinical trials of antifibrotic agents in patients with chronic liver disease. However, none of these have resulted in a robust and reproducible effect on fibrosis. It is therefore imperative that the ongoing translational challenges are addressed, to convert scientific discoveries into potent antifibrotics and enable bridging of the translational gap between putative therapeutic targets and effective treatments for patients with chronic liver disease.
Collapse
Affiliation(s)
- Prakash Ramachandran
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Dobie R, Henderson NC. Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis. F1000Res 2016; 5. [PMID: 27508067 PMCID: PMC4955024 DOI: 10.12688/f1000research.8822.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Despite the high prevalence of liver disease globally, there are currently no approved anti-fibrotic therapies to treat patients with liver fibrosis. A major goal in anti-fibrotic therapy is the development of drug delivery systems that allow direct targeting of the major pro-scarring cell populations within the liver (hepatic myofibroblasts) whilst not perturbing the homeostatic functions of other mesenchymal cell types present within both the liver and other organ systems. In this review we will outline some of the recent advances in our understanding of myofibroblast biology, discussing both the origin of myofibroblasts and possible myofibroblast fates during hepatic fibrosis progression and resolution. We will then discuss the various strategies currently being employed to increase the precision with which we deliver potential anti-fibrotic therapies to patients with liver fibrosis.
Collapse
Affiliation(s)
- Ross Dobie
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Luli S, Di Paolo D, Perri P, Brignole C, Hill SJ, Brown H, Leslie J, Marshall H, Wright MC, Mann DA, Ponzoni M, Oakley F. A new fluorescence-based optical imaging method to non-invasively monitor hepatic myofibroblasts in vivo. J Hepatol 2016; 65:75-83. [PMID: 27067455 PMCID: PMC4914605 DOI: 10.1016/j.jhep.2016.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Currently, staging of fibrosis in preclinical rodent liver fibrosis models is achieved histologically. Many animals are used at multiple time-points to assess disease progression or therapeutic responses. Hepatic myofibroblasts promote liver fibrosis therefore quantifying these cells in vivo could assess disease or predict therapeutic responses in mice. We fluorescently labelled a single chain antibody (C1-3) that binds hepatic myofibroblasts to monitor fibrogenesis in vivo. METHODS CCl4 was used to induce acute liver injury in WT and cRel(-/-) mice. Bile duct ligation was used to model chronic fibrosis. Hepatic myofibroblasts were depleted using a liposome-drug delivery system or chemically with sulfasalazine. An IVIS® spectrum visualised fluorophore-conjugated C1-3 in vivo. RESULTS IVIS detection of fluorescently labelled-C1-3 but not a control antibody discriminates between fibrotic and non-fibrotic liver in acute and chronic liver fibrosis models. cRel(-/-) mice have a fibro-protective phenotype and IVIS signal is reduced in CCl4 injured cRel(-/-) mice compared to wild-type. In vivo imaging of fluorescently labelled-C1-3 successfully predicts reductions in hepatic myofibroblast numbers in fibrotic liver disease in response to therapy. CONCLUSIONS We report a novel fluorescence imaging method to assess murine hepatic myofibroblast numbers in vivo during liver fibrosis and after therapy. We also describe a novel liposomal antibody targeting system to selectively deliver drugs to hepatic myofibroblasts in vivo. C1-3 binds human hepatic myofibroblast therefore imaging labelled-C1-3 could be used for clinical studies in man to help stage fibrosis, demonstrate efficacy of drugs that promote hepatic myofibroblast clearance or predict early therapeutic responses. LAY SUMMARY In response to damage and injury scars develop in the liver and the main cell that makes the scar tissue is the hepatic myofibroblast (HM). C1-3 is an antibody fragment that binds to the scar forming HM. We have fluorescently labelled C1-3 and given it to mice that have either normal or scarred livers (which contain HM) and then used a machine called an in vivo imaging system (IVIS) that takes pictures of different wavelengths of light, to visualise the antibody binding to HM inside the living mouse. Using fluorescently labelled C1-3 we can assess HM numbers in the injured liver and monitor response to therapy. We have also used C1-3 to target drugs encapsulated in lipid carriers (liposomes) to the HM to kill the HM and reduce the liver disease.
Collapse
Affiliation(s)
- Saimir Luli
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniela Di Paolo
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Brignole
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Stephen J. Hill
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Helen Brown
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jack Leslie
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - H.L. Marshall
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Matthew C. Wright
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Derek A. Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mirco Ponzoni
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fiona Oakley
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
27
|
Rieder F, Bettenworth D, Imai J, Inagaki Y. Intestinal Fibrosis and Liver Fibrosis: Consequences of Chronic Inflammation or Independent Pathophysiology? Inflamm Intest Dis 2016; 1:41-49. [PMID: 29922656 DOI: 10.1159/000445135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal fibrosis and liver fibrosis represent a significant burden for our patients and health-care systems. Despite the severe clinical problem and the observation that fibrosis is reversible, no specific antifibrotic therapies exist. Summary In this review, using an 'East-West' scientific collaboration, we summarize the current knowledge on principal mechanisms shared by intestinal fibrosis and liver fibrosis. We furthermore discuss inflammation as the cause of fibrogenesis in both entities, depict unique features of intestinal and hepatic fibrosis, and provide a future outlook on the development of antifibrotic therapies. Key Messages A collaborative effort in the field of fibrosis, covering multiple organ systems, will have the highest chance of leading to the development of a successful antifibrotic intervention.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, Ohio, USA.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Jin Imai
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Gastroenterology, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
28
|
Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, Gounni AS, Wright MC, Uzonna JE. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology 2016; 63:620-32. [PMID: 26289140 DOI: 10.1002/hep.28130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/16/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED Visceral leishmaniasis (VL) is associated with severe immune dysfunction and if untreated leads to death. Because the liver is one of the primary target organs in VL, unraveling the mechanisms governing the local hepatic immune response is important for understanding the immunopathogenesis of VL. We previously reported that mice with inactivating knockin mutation in the p110δ gene (p110δ(D910A) ) are resistant to VL, due in part to impaired regulatory T-cell (Treg) expansion. In this study, we investigated the mechanism of this resistance by focusing on hepatic stellate cells (HSCs), which are known to regulate Treg induction and expansion. We show that HSCs are infected with Leishmania donovani in vivo and in vitro and that this infection leads to the production of interleukin-2, interleukin-6, and transforming growth factor-β, cytokines known to induce Tregs. We further demonstrate that L. donovani infection leads to expansion of HSCs in a p110δ-dependent manner and that this correlated with proliferation of hepatic Tregs in vivo. In vitro studies clearly show that L. donovani-infected HSCs induce CD4(+) T cells to become Tregs and expand Tregs in a p110δ-dependent manner. Targeted depletion of HSCs during infection caused a dramatic reduction in liver Treg numbers and proliferation, which was associated with a decrease in interleukin-10 production by hepatic T cells and a more efficient parasite control. CONCLUSION These results demonstrate the critical role of HSCs in the pathogenesis of VL and suggest that the enhanced resistance of p110δ(D910A) mice to L. donovani infection is due in part to impaired expansion and inability of their HSCs to induce and expand Tregs in the liver.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhirong Mou
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Jia
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hesamaldin Movassagh
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chukwunonso Onyilagha
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew C Wright
- Liver Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jude E Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Abstract
Intestinal fibrosis is a common feature of Crohn's disease and may appear as a stricture, stenosis, or intestinal obstruction. Fibrostenosing Crohn's disease leads to a significantly impaired quality of life in affected patients and constitutes a challenging treatment situation. In the absence of specific medical antifibrotic treatment options, endoscopic or surgical therapy approaches with their potential harmful side effects are frequently used. However, our understanding of mechanisms of fibrogenesis in general and specifically intestinal fibrosis has emerged. Progression of fibrosis in the liver, lung, or skin can be halted or even reversed, and possible treatment targets have been identified. In face of this observation and given the fact that fibrotic alterations in various organs of the human body share distinct core characteristics, this article aims to address whether reversibility of intestinal fibrosis may be conceivable and to highlight promising research avenues and therapies.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Zhang X, Xin J, Shi Y, Xu W, Yu S, Yang Z, Liu C, Cao L, Guo Q. Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study. Nucl Med Biol 2014; 42:250-5. [PMID: 25530210 DOI: 10.1016/j.nucmedbio.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. (99m)Tc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the (99m)Tc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of (99m)Tc-3PRGD2 scintigraphy for this purpose. METHODS We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered (99m)Tc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with (99m)Tc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. RESULTS The fibrotic livers showed enhanced (99m)Tc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98±0.08 vs. control, 1.50±0.12, p<0.01). The liver t1/2 was longer than in the controls (TAA, 27.07±10.69 min vs. control, 12.67±4.10 min, p<0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13±0.63 min vs. control, 3.41±0.77 min, p=0.94). CONCLUSIONS (99m)Tc-3PRGD2 molecular imaging can provide a non-invasive method for assessing activation of HSCs.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jun Xin
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Shi
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weina Xu
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shupeng Yu
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiguang Yang
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changping Liu
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Cao
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Abstract
Our molecular understanding of cancer biology has made substantial progress during the last two decades. During recent years it became evident that inflammation is a major driving force in tumor development since chronic virus infection and carcinogenesis are closely correlated. These insights refined our view on the decisive role of persistent virus infection and chronic inflammation in tumor onset, growth, and metastatic progression. Explanations have been delivered how tumor cells interact and correspond with neighbouring epithelia and infiltrating immune cells for shaping the so-called 'tumor-microenvironment' and establishing tumor-specific tolerance. This extended view on malignant diseases should now allow for rational design of interventions targeting inflammation and underlying pathways for prevention and therapy of inflammation-associated cancer. This chapter outlines the role of virus-mediated inflammations in tumorigenesis thereby shedding light on the mechanisms of cancer-related inflammation and on characteristic features of the tumor-microenvironment, which has been recently identified to play a key role in maintenance and progression of tumors. Finally, the chapter discusses latest aspects in prevention of inflammation-related cancer and provides a short outlook on the future prospects of cancer immunotherapy.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | |
Collapse
|
32
|
Poelstra K, Beljaars L, Melgert BN. Cell-specific delivery of biologicals: problems, pitfalls and possibilities of antifibrotic compounds in the liver. Drug Discov Today 2013; 18:1237-42. [DOI: 10.1016/j.drudis.2013.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
|
33
|
Puche JE, Lee YA, Jiao J, Aloman C, Fiel MI, Muñoz U, Kraus T, Lee T, Yee HF, Friedman SL. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 2013; 57:339-50. [PMID: 22961591 PMCID: PMC3522764 DOI: 10.1002/hep.26053] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED We have developed a novel model for depleting mouse hepatic stellate cells (HSCs) that has allowed us to clarify their contributions to hepatic injury and fibrosis. Transgenic (Tg) mice expressing the herpes simplex virus thymidine kinase gene (HSV-Tk) driven by the mouse GFAP promoter were used to render proliferating HSCs susceptible to killing in response to ganciclovir (GCV). Effects of GCV were explored in primary HSCs and in vivo. Panlobular damage was provoked to maximize HSC depletion by combining CCl(4) (centrilobular injury) with allyl alcohol (AA) (periportal injury), as well as in a bile duct ligation (BDL) model. Cell depletion in situ was quantified using dual immunofluorescence (IF) for desmin and GFAP. In primary HSCs isolated from both untreated wild-type (WT) and Tg mice, GCV induced cell death in ≈ 50% of HSCs from Tg, but not WT, mice. In TG mice treated with CCl(4) +AA+GCV, there was a significant decrease in GFAP and desmin-positive cells, compared to WT mice (≈ 65% reduction; P < 0.01), which was accompanied by a decrease in the expression of HSC-activation markers (alpha smooth muscle actin, beta platelet-derived growth factor receptor, and collagen I). Similar results were observed after BDL. Associated with HSC depletion in both fibrosis models, there was marked attenuation of fibrosis and liver injury, as indicated by Sirius Red/Fast Green, hematoxylin and eosin quantification, and serum alanine/aspartate aminotransferase. Hepatic expression of interleukin-10 and interferon-gamma was increased after HSC depletion. No toxicity of GCV in either WT or Tg mice accounted for the differences in injury. CONCLUSION Activated HSCs significantly amplify the response to liver injury, further expanding this cell type's repertoire in orchestrating hepatic injury and repair.
Collapse
Affiliation(s)
- Juan E. Puche
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA,University CEU-San Pablo, School of Medicine, Madrid, Spain
| | - Youngmin A. Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Jingjing Jiao
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Costica Aloman
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Maria I. Fiel
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Ursula Muñoz
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA,University CEU-San Pablo, School of Medicine, Madrid, Spain
| | - Thomas Kraus
- Department of Microbiology, Mount Sinai School of Medicine, NY, USA
| | - Tingfang Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Hal F. Yee
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
34
|
Abstract
Contractile myofibroblasts are responsible for the irreversible alterations of the lung parenchyma that hallmark pulmonary fibrosis. In response to lung injury, a variety of different precursor cells can become activated to develop myofibroblast features, most notably formation of stress fibers and expression of α-smooth muscle actin. Starting as an acute and beneficial repair process, myofibroblast secretion of collagen and contraction frequently becomes excessive and persists. The result is accumulation of stiff scar tissue that obstructs and ultimately destroys lung function. In addition to being a consequence of myofibroblast activities, the stiffened tissue is also a major promoter of the myofibroblast. The mechanical properties of scarred lung and fibrotic foci promote myofibroblast contraction and differentiation. One essential element in this detrimental feed-forward loop is the mechanical activation of the profibrotic growth factor transforming growth factor-β1 from stores in the extracellular matrix. Interfering with myofibroblast contraction and integrin-mediated force transmission to latent transforming growth factor-β1 and matrix proteins are here presented as possible therapeutic strategies to halt fibrosis.
Collapse
|
35
|
Therapeutic targeting of redox signaling in myofibroblast differentiation and age-related fibrotic disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:458276. [PMID: 23150749 PMCID: PMC3486436 DOI: 10.1155/2012/458276] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022]
Abstract
Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH) leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS) scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation.
Collapse
|
36
|
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release 2012; 161:188-97. [PMID: 22370583 DOI: 10.1016/j.jconrel.2012.02.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 02/07/2023]
|
37
|
Ueha S, Shand FHW, Matsushima K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol 2012; 3:71. [PMID: 22566952 PMCID: PMC3342381 DOI: 10.3389/fimmu.2012.00071] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/22/2012] [Indexed: 01/26/2023] Open
Abstract
Organ fibrosis is a pathological condition associated with chronic inflammatory diseases. In fibrosis, excessive deposition of extracellular matrix (ECM) severely impairs tissue architecture and function, eventually resulting in organ failure. This process is mediated primarily by the induction of myofibroblasts, which produce large amounts of collagen I, the main component of the ECM. Accordingly, the origin, developmental pathways, and mechanisms of myofibroblast regulation are attracting increasing attention as potential therapeutic targets. The fibrotic cascade, from initial epithelial damage to eventual myofibroblast induction, is mediated by complex biological processes such as macrophage infiltration, a shift from Th1 to Th2 phenotype, and by inflammatory mediators such as transforming growth factor-β. Here, we review the current understanding of the cellular and molecular mechanisms underlying organ fibrosis.
Collapse
Affiliation(s)
- Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
38
|
Stimulating healthy tissue regeneration by targeting the 5-HT₂B receptor in chronic liver disease. Nat Med 2011; 17:1668-73. [PMID: 22120177 DOI: 10.1038/nm.2490] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023]
Abstract
Tissue homeostasis requires an effective, limited wound-healing response to injury. In chronic disease, failure to regenerate parenchymal tissue leads to the replacement of lost cellular mass with a fibrotic matrix. The mechanisms that dictate the balance of cell regeneration and fibrogenesis are not well understood. Here we report that fibrogenic hepatic stellate cells (HSCs) in the liver are negative regulators of hepatocyte regeneration. This negative regulatory function requires stimulation of the 5-hydroxytryptamine 2B receptor (5-HT(2B)) on HSCs by serotonin, which activates expression of transforming growth factor β1 (TGF-β1), a powerful suppressor of hepatocyte proliferation, through signaling by mitogen-activated protein kinase 1 (ERK) and the transcription factor JunD. Selective antagonism of 5-HT(2B) enhanced hepatocyte growth in models of acute and chronic liver injury. We also observed similar effects in mice lacking 5-HT(2B) or JunD or upon selective depletion of HSCs in wild-type mice. Antagonism of 5-HT(2B) attenuated fibrogenesis and improved liver function in disease models in which fibrosis was pre-established and progressive. Pharmacological targeting of 5-HT(2B) is clinically safe in humans and may be therapeutic in chronic liver disease.
Collapse
|
39
|
Stefano JT, Cogliati B, Santos F, Lima VMR, Mazo DC, Matte U, Alvares-da-Silva MR, Silveira TR, Carrilho FJ, Oliveira CPMS. S-Nitroso-N-acetylcysteine induces de-differentiation of activated hepatic stellate cells and promotes antifibrotic effects in vitro. Nitric Oxide 2011; 25:360-365. [PMID: 21820071 DOI: 10.1016/j.niox.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/22/2011] [Accepted: 07/04/2011] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) has been shown to act as a potent antifibrogenic agent by decreasing myofibroblast differentiation. S-Nitroso-N-acetylcysteine (SNAC), a NO donor, attenuates liver fibrosis in rats, but the cellular and molecular mechanisms on liver myofibroblast-like phenotype still remain unknown. Here, we investigate the antifibrotic effects of SNAC on hepatic stellate cells, the major fibrogenic cell type in the liver. A murine GRX cell line was incubated with SNAC (100μM) or vehicle (control group) for 72h. Cell viability was measured by MTT colorimetric assay and the conversion of myofibroblast into quiescent fat-storing cell phenotype was evaluated by Oil-Red-O staining. TGFβ-1, TIMP-1, and MMP-13 levels were measure in the supernatant by ELISA. Profibrogenic- and fibrolytic-related gene expression was quantified using real-time qPCR. SNAC induced phenotype conversion of myofibroblast-like phenotype into quiescent cells. SNAC decreased gene and protein expression of TGFβ-1 and MMP-2 compared to control groups. Besides, SNAC down-regulated profibrogenic molecules and up-regulated MMP-13 gene expression, which plays a key role in the degradation of interstitial collagen in liver fibrosis. In conclusion, these findings demonstrate that SNAC efficiently can modulate the activation and functionality of murine hepatic stellate cells and could be considered as an antifibrotic treatment to human liver fibrosis.
Collapse
Affiliation(s)
- J T Stefano
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Targeted therapy of liver fibrosis/cirrhosis and its complications. J Hepatol 2011; 55:726-728. [PMID: 21601600 DOI: 10.1016/j.jhep.2011.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 12/04/2022]
|
41
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
42
|
Abstract
Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible.
Collapse
Affiliation(s)
- Mona H Ismail
- Department of Internal Medicine, Division of Gastroenterology, King Fahad University Hospital, Al-Khobar, Saudi Arabia
| | - Massimo Pinzani
- Dipartimento di Medicina Interna Center for Research, High Education and Transfer, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
43
|
Ismail MH, Pinzani M. Reversal of hepatic fibrosis: pathophysiological basis of antifibrotic therapies. HEPATIC MEDICINE : EVIDENCE AND RESEARCH 2011. [PMID: 24367223 DOI: 10.2147/hmer.s905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible.
Collapse
Affiliation(s)
- Mona H Ismail
- Department of Internal Medicine, Division of Gastroenterology, King Fahad University Hospital, Al-Khobar, Saudi Arabia
| | - Massimo Pinzani
- Dipartimento di Medicina Interna Center for Research, High Education and Transfer, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
44
|
Schauer IG, Rowley DR. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 2011; 82:200-10. [PMID: 21664759 DOI: 10.1016/j.diff.2011.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022]
Abstract
The human prostate gland is one of the only internal organs that continue to enlarge throughout adulthood. The specific mechanisms that regulate this growth, as well as the pathological changes leading to the phenotype observed in the disease benign prostatic hyperplasia (BPH), are essentially unknown. Recent studies and their associated findings have made clear that many complex alterations occur, involving persistent and chronic inflammation, circulating hormonal level deregulation, and aberrant wound repair processes. BPH has been etiologically characterized as a progressive, albeit discontinuous, hyperplasia of both the glandular epithelial and the stromal cell compartments coordinately yielding an expansion of the prostate gland and clinical symptoms. Interestingly, the inflammatory and repair responses observed in BPH are also key components of general wound repair in post-natal tissues. These responses include altered expression of chemokines, cytokines, matrix remodeling factors, chronic inflammatory processes, altered immune surveillance and recognition, as well as the formation of a prototypical 'reactive' stroma, which is similar to that observed across various fibroplasias and malignancies of a variety of tissue sites. Stromal tissue, both embryonic mesenchyme and adult reactive stroma myofibroblasts, has been shown to exert potent and functional regulatory control over epithelial proliferation and differentiation as well as immunoresponsive modulation. Thus, the functional biology of a reactive stroma, within the context of an adult disease typified by epithelial and stromal aberrant hyperplasia, is critical to understand within the context of prostate disease and beyond. The mechanisms that regulate reactive stroma biology in BPH represent targets of opportunity for new therapeutic approaches that may extend to other tissue contexts. Accordingly, this review seeks to address the dissection of important factors, signaling pathways, genes, and other regulatory components that mediate the interplay between epithelium and stromal responses in BPH.
Collapse
Affiliation(s)
- Isaiah G Schauer
- Department of Molecular and Cellular Biology, One Baylor Plaza, Jewish Research Institute, Baylor College of Medicine, 325D, mailstop BCM130, Houston, TX 77030, USA.
| | | |
Collapse
|
45
|
Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol 2011; 300:G723-8. [PMID: 21292997 PMCID: PMC3302189 DOI: 10.1152/ajpgi.00414.2010] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dysregulated wound healing leads to fibrosis, whereby fibroblasts synthesize excess extracellular matrix and scarring impairs proper organ function. Although fibrotic diseases arise from diverse causes and display heterogeneous features, fibrosis commonly associates with chronic inflammation. Recent discoveries reinforce the idea that communication between fibroblasts, macrophages, and CD4 T cells integrates the processes of wound healing and host defense. Signals between macrophages and fibroblasts can exacerbate, suppress, or reverse fibrosis. Fibroblasts and macrophages are activated by T cells, but their activation also engages negative feedback loops that reduce fibrosis by restraining the immune response, particularly when the Th2 cytokine IL-13 contributes to pathology. Thus the interactions among fibroblasts, macrophages, and CD4 T cells likely play general and critical roles in initiating, perpetuating, and resolving fibrosis in both experimental and clinical conditions.
Collapse
Affiliation(s)
- Luke Barron
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
46
|
Abstract
Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.
Collapse
|
47
|
Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S. The kidney as a target organ in pharmaceutical research. Drug Discov Today 2011; 16:244-59. [DOI: 10.1016/j.drudis.2010.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/11/2010] [Accepted: 11/24/2010] [Indexed: 02/07/2023]
|
48
|
Abstract
Renal fibrosis is a key determinant of the progression of renal disease irrespective of the original cause and thus can be regarded as a final common pathway that dictates eventual outcome. The development of renal fibrosis involves many cellular and molecular mediators including leukocytes, myofibroblasts, cytokines, and growth factors, as well as metalloproteinases and their endogenous inhibitors. Study of experimental and human renal disease has shown the involvement of macrophages in renal fibrosis resulting from diverse disease processes. Recent work exploring the nature of both circulating monocytes and tissue macrophages has highlighted their multifaceted phenotype and this impacts their role in renal fibrosis in vivo. In this review we outline the key players in the fibrotic response of the injured kidney and discuss the role of monocytes and macrophages in renal scarring.
Collapse
|
49
|
Marshall HL, Oakley F, Wright MC. Myofibroblast depletion does not inhibit liver regeneration after partial hepatectomy. Toxicology 2010. [DOI: 10.1016/j.tox.2010.08.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Douglass A, Marshall H, Wright MC. Myofibroblast depletion during acute CCl4 injury delays hepatocyte injury and promotes liver regeneration. Toxicology 2010. [DOI: 10.1016/j.tox.2010.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|