1
|
Tan Z, Chen L, Ye Z, Lu Q. Xiaohuang Qudan decoction alleviates ANIT-induced cholestatic liver injury by inhibiting the JAK2/STAT3 pathway and regulating TH17/Treg. Chin J Nat Med 2025; 23:457-470. [PMID: 40274348 DOI: 10.1016/s1875-5364(25)60854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 04/26/2025]
Abstract
Xiaohuang Qudan decoction (XHQDD) is a classical traditional Chinese medicine (TCM) formula widely used in the treatment of cholestatic liver injury. Despite its widespread use, the protective mechanism of XHQDD against cholestatic liver injury remains incompletely understood. The aim of this study was to investigate whether XHQDD mediates its beneficial effects by inhibiting the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and regulating TH17/Treg balance. To this end, the researchers used Sprague-Dawley (SD) rats and established a cholestatic liver injury model by oral administration of alpha-naphthylisothiocyanate (ANIT). The experimental group was divided into six groups: Control (CON), ANIT, ursodeoxycholic acid (UDCA), XHQDD-low dose (XHQDD-L) group, XHQDD-medium dose (XHQDD-M) group, and XHQDD-high dose (XHQDD-H) groups. Then, after 7 d of treatment, various tests were performed to verify the results. Firstly, XHQDD and its drug-containing serum were analyzed by ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and 14 blood-entry components were identified. Then, bile flow was monitored and found to be significantly reduced in the model group, which was significantly reversed in the UDCA and XHQDD groups. To further assess ANIT-induced liver injury, hematoxylin and eosin (H&E) and Sirius red staining, alongside transmission electron microscopy (TEM), were employed to observe liver tissues, revealing hepatocellular injury, cholestasis, and hepatic fibrotic changes. Serum inflammatory factors and liver injury indicators were assessed using enzyme-linked immunosorbent assay (ELISA), indicating an inflammatory state in ANIT-induced liver injury rats. The expression levels of JAK2/STAT3-related genes and proteins in liver and intestinal tissues were measured via quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence (IF) staining, and Western blottting (WB) assays. These studies revealed that the inflammatory state of liver-injured rats was inextricably linked to the inflammatory cascade associated with the JAK2/STAT3 pathway and that XHQDD may exert anti-inflammatory efficacy by inhibiting the JAK2/STAT3 pathway. Flow cytometry was used to determine the percentage of T helper 17 (Th17)/regulatory T (Treg) cells in serum and hepatocytes, and it was further found that XHQDD was able to regulate Th17/Treg immune homeostasis in liver-injured rats. The findings suggest that XHQDD markedly alleviates inflammation in ANIT rats, potentially treating cholestasis and liver injury through JAK2/STAT3 inhibition and Th17/Treg balance regulation.
Collapse
Affiliation(s)
- Zhangkui Tan
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Zhiqin Ye
- Department of Rheumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, affiliated with Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China.
| |
Collapse
|
2
|
Izquierdo-Altarejos P, Felipo V. Contribution of extracellular vesicles to neuroinflammation and cognitive and motor deficits in hyperammonemia and hepatic encephalopathy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:37-43. [PMID: 39698415 PMCID: PMC11648396 DOI: 10.20517/evcna.2023.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 12/20/2024]
Abstract
Cirrhotic patients can present hepatic encephalopathy (HE), showing motor and cognitive deficits. Hyperammonemia and peripheral inflammation are known to induce neuroinflammation and alter neurotransmission, which finally induces neurological impairment in HE. However, the mechanisms by which the deleterious effects of peripheral inflammation are transmitted to the brain are not well understood. Extracellular vesicles (EVs) have recently emerged as a new mediator between the periphery and the brain, particularly in pathologies associated with sustained inflammation and in neurological disorders. In this work, we summarized the main findings on the role of plasma EVs in hyperammonemia and HE and discussed its potential implication in the pathogenesis of hepatic encephalopathy.
Collapse
|
3
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
4
|
Izquierdo-Altarejos P, Martínez-García M, Felipo V. Extracellular vesicles from hyperammonemic rats induce neuroinflammation in hippocampus and impair cognition in control rats. Cell Mol Life Sci 2023; 80:90. [PMID: 36922433 PMCID: PMC11072842 DOI: 10.1007/s00018-023-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Patients with liver cirrhosis show hyperammonemia and peripheral inflammation and may show hepatic encephalopathy with cognitive impairment, reproduced by rats with chronic hyperammonemia. Peripheral inflammation induces neuroinflammation in hippocampus of hyperammonemic rats, altering neurotransmission and leading to cognitive impairment. Extracellular vesicles (EVs) may transmit pathological effects from the periphery to the brain. We hypothesized that EVs from peripheral blood would contribute to cognitive alterations in hyperammonemic rats. The aims were to assess whether EVs from plasma of hyperammonemic rats (HA-EVs) induce cognitive impairment and to identify the underlying mechanisms. Injection of HA-EVs impaired learning and memory, induced microglia and astrocytes activation and increased TNFα and IL-1β. Ex vivo incubation of hippocampal slices from control rats with HA-EVs reproduced these alterations. HA-EVs increased membrane expression of TNFR1, reduced membrane expression of TGFβR2 and Smad7 and IκBα levels and increased IκBα phosphorylation. This led to increased activation of NF-κB and IL-1β production, altering membrane expression of NR2B, GluA1 and GluA2 subunits, which would be responsible for cognitive impairment. All these effects of HA-EVs were prevented by blocking TNFα, indicating that they were mediated by enhanced activation of TNFR1 by TNFα. We show that these mechanisms are very different from those leading to motor incoordination, which is due to altered GABAergic neurotransmission in cerebellum. This demonstrates that peripheral EVs play a key role in the transmission of peripheral alterations to the brain in hyperammonemia and hepatic encephalopathy, inducing neuroinflammation and altering neurotransmission in hippocampus, which in turn is responsible for the cognitive deficits.
Collapse
Affiliation(s)
- Paula Izquierdo-Altarejos
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
| |
Collapse
|
5
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
7
|
Izquierdo-Altarejos P, Martínez-García M, Felipo V. Extracellular Vesicles From Hyperammonemic Rats Induce Neuroinflammation in Cerebellum of Normal Rats: Role of Increased TNFα Content. Front Immunol 2022; 13:921947. [PMID: 35911759 PMCID: PMC9325972 DOI: 10.3389/fimmu.2022.921947] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperammonemia plays a main role in the neurological impairment in cirrhotic patients with hepatic encephalopathy. Rats with chronic hyperammonemia reproduce the motor incoordination of patients with minimal hepatic encephalopathy, which is due to enhanced GABAergic neurotransmission in cerebellum as a consequence of neuroinflammation. Extracellular vesicles (EVs) could play a key role in the transmission of peripheral alterations to the brain to induce neuroinflammation and neurological impairment in hyperammonemia and hepatic encephalopathy. EVs from plasma of hyperammonemic rats (HA-EVs) injected to normal rats induce neuroinflammation and motor incoordination, but the underlying mechanisms remain unclear. The aim of this work was to advance in the understanding of these mechanisms. To do this we used an ex vivo system. Cerebellar slices from normal rats were treated ex vivo with HA-EVs. The aims were: 1) assess if HA-EVs induce microglia and astrocytes activation and neuroinflammation in cerebellar slices of normal rats, 2) assess if this is associated with activation of the TNFR1-NF-kB-glutaminase-GAT3 pathway, 3) assess if the TNFR1-CCL2-BDNF-TrkB pathway is activated by HA-EVs and 4) assess if the increased TNFα levels in HA-EVs are responsible for the above effects and if they are prevented by blocking the action of TNFα. Our results show that ex vivo treatment of cerebellar slices from control rats with extracellular vesicles from hyperammonemic rats induce glial activation, neuroinflammation and enhance GABAergic neurotransmission, reproducing the effects induced by hyperammonemia in vivo. Moreover, we identify in detail key underlying mechanisms. HA-EVs induce the activation of both the TNFR1-CCL2-BDNF-TrkB-KCC2 pathway and the TNFR1-NF-kB-glutaminase-GAT3 pathway. Activation of these pathways enhances GABAergic neurotransmission in cerebellum, which is responsible for the induction of motor incoordination by HA-EVs. The data also show that the increased levels of TNFα in HA-EVs are responsible for the above effects and that the activation of both pathways is prevented by blocking the action of TNFα. This opens new therapeutic options to improve motor incoordination in hyperammonemia and also in cirrhotic patients with hepatic encephalopathy and likely in other pathologies in which altered cargo of extracellular vesicles contribute to the propagation of the pathology.
Collapse
|
8
|
Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Insight Into Regulatory T Cells in Sepsis-Associated Encephalopathy. Front Neurol 2022; 13:830784. [PMID: 35370925 PMCID: PMC8965708 DOI: 10.3389/fneur.2022.830784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse central nervous system (CNS) dysfunction during sepsis, and is associated with increased mortality and poor outcomes in septic patients. Despite the high incidence and clinical relevance, the exact mechanisms driving SAE pathogenesis are not yet fully understood, and no specific therapeutic strategies are available. Regulatory T cells (Tregs) have a role in SAE pathogenesis, thought to be related with alleviation of sepsis-induced hyper-inflammation and immune responses, promotion of T helper (Th) 2 cells functional shift, neuroinflammation resolution, improvement of the blood-brain barrier (BBB) function, among others. Moreover, in a clinical point of view, these cells have the potential value of improving neurological and psychiatric/mental symptoms in SAE patients. This review aims to provide a general overview of SAE from its initial clinical presentation to long-term cognitive impairment and summarizes the main features of its pathogenesis. Additionally, a detailed overview on the main mechanisms by which Tregs may impact SAE pathogenesis is given. Finally, and considering that Tregs may be a novel target for immunomodulatory intervention in SAE, different therapeutic options, aiming to boost peripheral and brain infiltration of Tregs, are discussed.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Yu-lei Gao
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai
| |
Collapse
|
9
|
Almishri W, Swain LA, D'Mello C, Le TS, Urbanski SJ, Nguyen HH. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol 2022; 12:779119. [PMID: 35095853 PMCID: PMC8793775 DOI: 10.3389/fimmu.2021.779119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam A Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyson S Le
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan J Urbanski
- Department of Pathology & Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henry H Nguyen
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
11
|
Phaw NA, Leighton J, Dyson JK, Jones DE. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:235-241. [PMID: 33131347 DOI: 10.1080/17474124.2021.1844565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Patients with cholestatic diseases may develop fatigue and cognitive symptoms. The impact of symptom burden may be significant in some patients. To date, there are no effective pharmacological therapies to improve cognitive symptoms or fatigue in cholestasis and we are wholly reliant on supportive approaches. Area covered: This review provides an overview of cognitive symptoms and fatigue in the cholestatic liver disease primary biliary cholangitis (PBC), including pathophysiology and our approach to the management of these symptoms. Expert opinion: The impact of fatigue and cognitive symptoms on the perceived quality of life can be profound for patients with PBC. The pathophysiology of these symptoms is complex and poorly understood, making the development of therapeutic trials of symptom-directed therapies challenging. The current recommended management for fatigue and cognitive symptoms is mainly supportive.
Collapse
Affiliation(s)
- Naw April Phaw
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - Jessica Leighton
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK
| | - Jessica Katharine Dyson
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - David Ej Jones
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England.,National Institute of Health Research Newcastle Biochemical Research Centre, Newcastle University School of Clinical Medical Sciences , Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
13
|
Li W, Yuan F, Wang LY. Mechanism, prevention, and treatment of drug-induced cholestasis. Shijie Huaren Xiaohua Zazhi 2019; 27:1295-1303. [DOI: 10.11569/wcjd.v27.i21.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug-induced cholestasis (DIC) refers to the accumulation of bile acid in the liver or systemic circulation due to the obstruction of intrahepatic and extrahepatic bile flow caused by various prescription or non-prescription chemicals, biological agents, traditional Chinese medicines, natural drugs, and their metabolites. In recent years, the incidence of DIC, a common manifestation of drug-induced liver injury (DILI), has been increasing with the aging of the population, the increase of the variety of clinical medications, and the more common use of combined drugs. Therefore, DIC has attracted wide attention from medical professionals, including clinical pharmacists. Hepatic injury induced by DIC is a complex process, which is triggered by two types of biological reactions: the deteriorative response, caused by bile acid accumulation, and the adaptive response aiming at removing the accumulated bile acids. Current studies have shown that several factors can trigger DIC, including changes of functions or microstructures of membrane transporters, hepatocytes, and bile ducts. There is still a lack of specific effective treatment for DIC. Timely withdrawal of suspected liver-injuring drugs is the most important strategy for DIC, and appropriate drugs should be then chosen to relieve the condition based on the clinical type of DIC and symptoms such as itching. For very few patients with severe liver failure, liver transplantation should be considered to save their lives. As such, in-depth knowledge of the mechanism of DIC can help to optimize the prediction and pharmacovigillance model of DILI in vivo during drug development and afterwards marketing, and promote the improvement of prevention and treatment strategies and the development of related interventions. This article reviews the progress in the understanding of the pathogenesis, prevention, and treatment of DIC, with an aim to provide reference for further studies.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Fang Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Lai-You Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
14
|
Zhang H, Jiang Z, Zhang L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol 2019; 69:50-59. [PMID: 30669025 DOI: 10.1016/j.intimp.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Liver disease is a complicated pathological status with acute or chronic progressions, causing a series of damages to liver and massive burden to public health and society. Th17 and Treg, two subsets of CD4+ T helper cells, seem to keep a subtle balance in the maintenance of organic immune homeostasis including liver. The dysfunction of Th17/Treg balance in liver has been proved associated with hepatic injury and disease. Herein, we summarized the research advance of Th17 and Treg cells in different phenotypes of liver diseases in the past decade. It is known to all that hepatic diseases start from stimulations or infections like virus, autoimmune, alcohol and so on in the early stage, which would cause inflammation. With the disease consistently existed, severe outcomes like cirrhosis and hepatocellular carcinoma appear finally. In conclusion, it is found that Th17 and Treg cells serve as an important role in the immune response imbalance of liver diseases from the beginning to the end stage. However, the effect of these two subsets of CD4+ T helper cells is not a stereotype. Pathological role which exacerbates the disease and protective character which inhibits damage to liver are co-existed in the effect of Th17 and Treg cells. Still, more studies should be carried out to enrich the understandings of liver disease and Th17/Treg immune balance in the future.
Collapse
Affiliation(s)
- Haoran Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Garner KM, Amin R, Johnson RW, Scarlett EJ, Burton MD. Microglia priming by interleukin-6 signaling is enhanced in aged mice. J Neuroimmunol 2018; 324:90-99. [PMID: 30261355 PMCID: PMC6699492 DOI: 10.1016/j.jneuroim.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
During peripheral infection, excessive production of pro-inflammatory cytokines in the aged brain from primed microglia induces exaggerated behavioral pathologies. While the pro-inflammatory cytokine IL-6 increases in the brain with age, its role in microglia priming is not known. This study examined the functional role of IL-6 signaling on microglia priming. Our hypothesis is that IL-6 signaling mediates primed states of microglia in the aged. An initial study assessed age-related alteration in IL-6 signaling molecules; sIL-6R and sgp130 were measured in cerebrospinal fluid of young and aged wild-type animals. Subsequent studies of isolated microglia from C57BL6/J (IL-6+/+) and IL-6 knock-out (IL-6-/-) mice showed significantly less MHC-II expression in aged IL-6-/- compared to IL-6+/+ counterparts. Additionally, adult and aged IL-6+/+ and IL-6-/- animals were administered lipopolysaccharide (LPS) to simulate a peripheral infection; sickness behaviors and hippocampal cytokine gene expression were measured over a 24 h period. Aged IL-6-/- animals were resilient to LPS-induced sickness behaviors and recovered more quickly than IL-6+/+ animals. The age-associated baseline increase of IL-1β gene expression was ablated in aged IL-6-/- mice, suggesting IL-6 is a key driver of cytokine activity from primed microglia in the aged brain. We employed in vitro studies to understand molecular mechanisms in priming factors. MHC-II and pro-inflammatory gene expression (IL-1β, IL-10, IL-6) were measured after treating BV.2 microglia with sIL-6R and IL-6 or IL-6 alone. sIL-6R enhanced expression of both pro-inflammatory genes and MHC-II. Taken together, these data suggest IL-6 expression throughout life is involved in microglia priming and increased amounts of IL-6 following peripheral LPS challenge are involved in exaggerated sickness behaviors in the aged.
Collapse
Affiliation(s)
- Katherine M Garner
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Ravi Amin
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Rodney W Johnson
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States; Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Emily J Scarlett
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Michael D Burton
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
16
|
Borovcanin MM, Jovanovic I, Radosavljevic G, Pantic J, Minic Janicijevic S, Arsenijevic N, Lukic ML. Interleukin-6 in Schizophrenia-Is There a Therapeutic Relevance? Front Psychiatry 2017; 8:221. [PMID: 29163240 PMCID: PMC5681495 DOI: 10.3389/fpsyt.2017.00221] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Renewing interest in immune aspects of schizophrenia and new findings about the brain-fat axis encourage us to discuss the possible role of interleukin-6 (IL-6) in schizophrenia. Previously, it was suggested that a primary alteration of the innate immune system may be relevant in schizophrenia. Functional dichotomy of IL-6 suggests that this chemical messenger may be responsible for regulating the balance between pro- and anti-inflammatory responses, with tissue-specific properties at the periphery and in the central nervous system. Specific phase of this chronic and deteriorating disorder must be considered, which can involve IL-6 in acute or possible chronic inflammation and/or autoimmunity. We give an overview of IL-6 role in the onset and progression of this disorder, also considering cognitive impairment and metabolic changes in patients with schizophrenia. Data suggest that decreased serum level of IL-6 following antipsychotic therapy could be predisposing factor for the development of obesity and obesity-related metabolic disorders in schizophrenia. As we reviewed, the IL-6 plays significant role in disease genesis and progression, so the use of specific inhibitors may not only be beneficial for exacerbation and alleviation of positive symptoms, but may attenuate cognitive impairment in patients with schizophrenia.
Collapse
Affiliation(s)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
17
|
D'Mello C, Almishri W, Liu H, Swain MG. Interactions Between Platelets and Inflammatory Monocytes Affect Sickness Behavior in Mice With Liver Inflammation. Gastroenterology 2017; 153:1416-1428.e2. [PMID: 28802564 DOI: 10.1053/j.gastro.2017.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Patients with inflammatory liver disease commonly develop debilitating symptoms, called sickness behaviors, which arise via changes in brain function. Monocytes that produce tumor necrosis factor interact with cerebral endothelial cells to activate microglial cells and promote sickness behavior. Platelets regulate inflammation, and aggregates of monocytes and platelets are increased in the circulation of patients with liver disease. We investigated the role of platelets in inducing inflammatory features of circulating monocytes and promoting sickness behaviors in mice with cholestatic liver injury. METHODS We performed bile-duct ligations or sham surgeries on C57BL/6 or toll-like receptor 4 (TLR4)-knockout mice to induce liver inflammation. Liver inflammation was also induced in a separate group of mice by administration of concanavalin A. Circulating platelets, aggregates of monocytes and platelets, and activation of microglial cells were measured by flow cytometry. To deplete platelets, mice were given anti-thrombocyte serum or normal rabbit serum (control) 4 days after surgery. Interactions between monocytes and cerebral endothelial cells were analyzed by intravital microscopy. Sickness behaviors were quantified based on time spent by adult mice engaging in social behaviors toward a juvenile mouse, compared with time spent in nonsocial behavior or remaining immobile. RESULTS Aggregates of monocytes and platelets in circulation of mice increased significantly following bile-duct ligation. Platelet-monocyte interactions were required for activation of inflammatory monocytes and production of tumor necrosis factor. Platelet depletion greatly reduced adhesive interactions between inflammatory monocytes and adhesive interactions with cerebral endothelial cells and activation of the microglia, as well as development of sickness behavior. Furthermore, TLR4 signaling was important for aggregation of monocytes and platelets, and development of sickness behavior following bile-duct ligation. These findings were confirmed in mice with concanavalin A-induced liver injury. CONCLUSIONS In mice with liver inflammation, we found TLR4 and aggregates of monocytes and platelets to regulate microglial activation and development of sickness behavior. These findings might lead to new therapeutic strategies for liver disease-associated symptoms.
Collapse
Affiliation(s)
- Charlotte D'Mello
- Immunology Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wagdi Almishri
- Immunology Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hongqun Liu
- Gastrointestinal Research Group and Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark Gordon Swain
- Immunology Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
D'Mello C, Swain MG. Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. Curr Top Behav Neurosci 2017; 31:73-94. [PMID: 27677781 DOI: 10.1007/7854_2016_37] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.
Collapse
Affiliation(s)
- Charlotte D'Mello
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | - Mark G Swain
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
19
|
Grover VPB, Southern L, Dyson JK, Kim JU, Crossey MME, Wylezinska‐Arridge M, Patel N, Fitzpatrick JA, Bak‐Bol A, Waldman AD, Alexander GJ, Mells GF, Chapman RW, Jones DEJ, Taylor‐Robinson SD. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging. Aliment Pharmacol Ther 2016; 44:936-945. [PMID: 27604637 PMCID: PMC5082539 DOI: 10.1111/apt.13797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain change can occur in primary biliary cholangitis (PBC), potentially as a result of cholestatic and/or inflammatory processes. This change is linked to systemic symptoms of fatigue and cognitive impairment. AIM To identify whether brain change occurs early in PBC. If the change develops early and is progressive, it may explain the difficulty in treating these symptoms. METHODS Early disease brain change was explored in 13 patients with newly diagnosed biopsy-proven precirrhotic PBC using magnetisation transfer, diffusion-weighted imaging and 1 H magnetic resonance spectroscopy. Results were compared to 17 healthy volunteers. RESULTS Cerebral magnetisation transfer ratios were reduced in early PBC, compared to healthy volunteers, in the thalamus, putamen and head of caudate with no greater reduction in patients with greater symptom severity. Mean apparent diffusion coefficients were increased in the thalamus only. No 1 H magnetic resonance spectroscopy abnormalities were seen. Serum manganese levels were elevated in all PBC patients, but no relationship was seen with imaging or symptom parameters. There were no correlations between neuroimaging data, laboratory data, symptom severity scores or age. CONCLUSIONS This is the first study to be performed in this precirrhotic patient population, and we have highlighted that neuroimaging changes are present at a much earlier stage than previously demonstrated. The neuroimaging abnormalities suggest that the brain changes seen in PBC occur early in the pathological process, even before significant liver damage has occurred. If such changes are linked to symptom pathogenesis, this could have important implications for the timing of second-line-therapy use.
Collapse
Affiliation(s)
- V. P. B. Grover
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK,Robert Steiner MRI UnitImaging Sciences DepartmentMRC Clinical Sciences CentreImperial College LondonLondonUK
| | - L. Southern
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK
| | - J. K. Dyson
- Institute of Cellular MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
| | - J. U. Kim
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK
| | - M. M. E. Crossey
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK
| | - M. Wylezinska‐Arridge
- Robert Steiner MRI UnitImaging Sciences DepartmentMRC Clinical Sciences CentreImperial College LondonLondonUK
| | - N. Patel
- Robert Steiner MRI UnitImaging Sciences DepartmentMRC Clinical Sciences CentreImperial College LondonLondonUK
| | - J. A. Fitzpatrick
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK,Robert Steiner MRI UnitImaging Sciences DepartmentMRC Clinical Sciences CentreImperial College LondonLondonUK
| | - A. Bak‐Bol
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK
| | - A. D. Waldman
- Robert Steiner MRI UnitImaging Sciences DepartmentMRC Clinical Sciences CentreImperial College LondonLondonUK
| | - G. J. Alexander
- Cambridge Hepatobiliary ServiceAddenbrookes Hospital. Hills RoadCambridgeUK
| | - G. F. Mells
- Cambridge Hepatobiliary ServiceAddenbrookes Hospital. Hills RoadCambridgeUK
| | - R. W Chapman
- Nuffield Department of MedicineOxford UniversityJohn Radcliffe HospitalOxfordUK
| | - D. E. J. Jones
- Institute of Cellular MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
| | - S. D. Taylor‐Robinson
- Liver UnitDivision of Diabetes, Endocrinology and MetabolismDepartment of MedicineImperial College LondonLondonUK
| |
Collapse
|
20
|
Xie F, Chai J, Zhang Z, Hu Q, Ma T. MicroRNA 26a prolongs skin allograft survival and promotes regulatory T cell expansion in mice. Transpl Int 2016; 28:1143-51. [PMID: 25865461 DOI: 10.1111/tri.12590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
MicroRNA 26a (Mir-26a) has been reported to play functions in cellular differentiation, cell growth, cell apoptosis, and metastasis. However, the role of Mir-26a in transplant rejection has never been investigated. Full-thickness skin grafts 1-2 cm in diameter were obtained from the tail-skin CBA/J donor mice and transplanted onto the back of wild-type C57Bl/6 recipient mice. Vectors encoding pre-Mir-26a (LV-26a) and an empty lentiviral vector (LV-Con) delivered approximately 2 × 10(7) transforming units of recombinant lentivirus were injected to mice once through the tail vein. Mir-26a overexpression results in prolonged skin allograft survival (MST = 9.5 days in LV-Con mice; MST = 22 days in LV-26a mice. P < 0.01) and promoted regulatory T cells (Tregs) expansion. The prolonged skin allograft survival induced by LV-26a was abrogated by depletion of Tregs with anti-CD25 antibodies. Mir-26a significantly promoted IL-10 expression and suppressed the expression of IL-6, IL-17, and IFN-γ. Furthermore, IL-6 overexpression led to complete suppression of the Mir-26a-induced upregulation of Foxp3. The prolonged allograft survival induced by LV-Mir-26a was also completely abrogated by IL-6 overexpression. In conclusion, Mir-26a prolongs skin allograft survival and promotes Tregs expansion in part through inhibition of IL-6 expression.
Collapse
Affiliation(s)
- Feng Xie
- Department of Plastic Surgery, Henan Province People's Hospital, Zhengzhou, China.,Department of Burn, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Department of Burn, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Zhengwen Zhang
- Department of Plastic Surgery, Henan Province People's Hospital, Zhengzhou, China
| | - Quan Hu
- Department of Burn, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Tengxiao Ma
- Department of Plastic Surgery, Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Khandaker GM, Dantzer R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology (Berl) 2016; 233:1559-73. [PMID: 26037944 PMCID: PMC4671307 DOI: 10.1007/s00213-015-3975-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia is characterised by hallucinations, delusions, depression-like so-called negative symptoms, cognitive dysfunction, impaired neurodevelopment and neurodegeneration. Epidemiological and genetic studies strongly indicate a role of inflammation and immunity in the pathogenesis of symptoms of schizophrenia. Evidence accrued over the last two decades has demonstrated that there are a number of pathways through which systemic inflammation can exert profound influence on the brain leading to changes in mood, cognition and behaviour. The peripheral immune system-to-brain communication pathways have been studied extensively in the context of depression where inflammatory cytokines are thought to play a key role. In this review, we highlight novel evidence suggesting an important role of peripheral immune-to-brain communication pathways in schizophrenia. We discuss recent population-based longitudinal studies that report an association between elevated levels of circulating inflammatory cytokines and subsequent risk of psychosis. We discuss emerging evidence indicating potentially important role of blood-brain barrier endothelial cells in peripheral immune-to-brain communication, which may be also relevant for schizophrenia. Drawing on clinical and preclinical studies, we discuss whether immune-mediated mechanisms could help to explain some of the clinical and pathophysiological features of schizophrenia. We discuss implication of these findings for approaches to diagnosis, treatment and research in future. Finally, pointing towards links with early-life adversity, we consider whether persistent low-grade activation of the innate immune response, as a result of impaired foetal or childhood development, could be a common mechanism underlying the high comorbidity between certain neuropsychiatric and physical illnesses, such as schizophrenia, depression, heart disease and type-two diabetes.
Collapse
Affiliation(s)
- Golam M Khandaker
- Department of Psychiatry, University of Cambridge, Box 189, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK.
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain. J Neurosci 2015. [PMID: 26224864 DOI: 10.1523/jneurosci.0575-15.2015] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. SIGNIFICANCE STATEMENT This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life.
Collapse
|
23
|
Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice. PLoS One 2014; 9:e114726. [PMID: 25478691 PMCID: PMC4257707 DOI: 10.1371/journal.pone.0114726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10−/−) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10−/− mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.
Collapse
|
24
|
Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 2014; 35:9-20. [PMID: 24140301 DOI: 10.1016/j.bbi.2013.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/28/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients.
Collapse
|
25
|
P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 2013; 33:14878-88. [PMID: 24027287 DOI: 10.1523/jneurosci.1329-13.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sickness behaviors, such as fatigue, mood alterations, and cognitive dysfunction, which result from changes in central neurotransmission, are prevalent in systemic inflammatory diseases and greatly impact patient quality of life. Although, microglia (resident cerebral immune cells) and cytokines (e.g., TNFα) are associated with changes in central neurotransmission, the link between peripheral organ inflammation, circulating cytokine signaling, and microglial activation remains poorly understood. Here we demonstrate, using cerebral intravital microscopy, that in response to liver inflammation, there is increased monocyte specific rolling and adhesion along cerebral endothelial cells (CECs). Peripheral TNFα-TNFR1 signaling and the adhesion molecule P-selectin are central mediators of these monocyte-CEC adhesive interactions which were found to be closely associated with microglial activation, decreased central neural excitability and sickness behavior development. Similar monocyte-CEC adhesive interactions were also observed in another mouse model of peripheral organ inflammation (i.e., 2,4-dinitrobenzene sulfonic acid-induced colitis). Our observations provide a clear link between peripheral organ inflammation and cerebral changes that impact behavior, which can potentially allow for novel therapeutic interventions in patients with systemic inflammatory diseases.
Collapse
|
26
|
Zhang B, Hu M, Zhang P, Cao H, Wang Y, Wang Z, Su T. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis. Braz J Med Biol Res 2013; 46:433-9. [PMID: 23681290 PMCID: PMC3854395 DOI: 10.1590/1414-431x20132665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/11/2013] [Indexed: 11/22/2022] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic
liver disease of autoimmune etiology. A number of questions regarding its
etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a
critical role in self-tolerance and, for unknown reasons, their relative number
is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival
factor during B-cell maturation and its concentration is increased in peripheral
blood of PBC patients. It has been reported that activated B cells inhibit Treg
cell proliferation and there are no BAFF receptors on Tregs. Therefore, we
speculated that excessive BAFF may result in Treg reduction via B cells. To
prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors.
BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86,
IL-10, and TGF-β expression in B cells and Tregs were measured by flow
cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells.
However, BAFF had no direct effect on Treg cell apoptosis and cytokine
secretion. Nonetheless, we observed that BAFF-activated B cells could induce
Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed
that BAFF-activated CD4+ T cells had no effect on Treg apoptosis.
Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit
BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell
apoptosis and inhibits cytokine production by activating B cells in PBC
patients. The results of this study suggest that inhibition of BAFF activation
is a strategy for PBC treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Burton MD, Rytych JL, Freund GG, Johnson RW. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice. Brain Behav Immun 2013; 30:66-72. [PMID: 23354002 PMCID: PMC3641158 DOI: 10.1016/j.bbi.2013.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 11/26/2022] Open
Abstract
During systemic infection, inflammatory cytokines such as interleukin (IL)-6 are produced in excess in the brain of aged mice and induce severe behavioral deficits. However, no studies have examined how pro-inflammatory IL-6 trans-signaling is involved in the exaggerated production of IL-6 in the aged brain, nor the extent to which IL-6 trans-signaling affects other markers of neuroinflammation, adhesion molecules, and behavior. Therefore, this study investigated in aged mice the presence of IL-6 signaling subunits in microglia; the central effects of soluble gp130 (sgp130)-a natural inhibitor of the IL-6 trans-signaling pathway-on IL-6 production in microglia; and the effects of sgp130 given intracerebroventricularly (ICV) on neuroinflammation and sickness behavior caused by i.p. injection of lipopolysaccharide (LPS). Here we show that microglia isolated from aged mice have higher expression of IL-6 receptor (IL-6R) compared to microglia from adults; and the level of mRNA for ADAM17, the enzyme responsible for shedding membrane-bound IL-6R in trans-signaling, is higher in the hippocampus of aged mice compared to adults. Additionally, we show in aged mice that peripheral LPS challenge elicits a hyperactive IL-6 response in microglia, and selective blockade of trans-signaling by ICV injection of sgp130 mitigates this. The sgp130-associated inhibition of IL-6 was paralleled by amelioration of exaggerated and protracted sickness behavior in aged mice. Taken together, the results show that microglia are important regulators of the IL-6 trans-signaling response in the aged brain and sgp130 exerts an anti-inflammatory effect by inhibiting the pro-inflammatory arm of IL-6 signaling.
Collapse
Affiliation(s)
- Michael D Burton
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
| | - Jennifer L Rytych
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
| | - Gregory G Freund
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
| | - Rodney W Johnson
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Laboratory 1207 W. Gregory Dr. Urbana IL 61801
| |
Collapse
|
28
|
Eyre HA, Papps E, Baune BT. Treating depression and depression-like behavior with physical activity: an immune perspective. Front Psychiatry 2013; 4:3. [PMID: 23382717 PMCID: PMC3562851 DOI: 10.3389/fpsyt.2013.00003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022] Open
Abstract
The increasing burden of major depressive disorder makes the search for an extended understanding of etiology, and for the development of additional treatments highly significant. Biological factors may be useful biomarkers for treatment with physical activity (PA), and neurobiological effects of PA may herald new therapeutic development in the future. This paper provides a thorough and up-to-date review of studies examining the neuroimmunomodulatory effects of PA on the brain in depression and depression-like behaviors. From a neuroimmune perspective, evidence suggests PA does enhance the beneficial and reduce the detrimental effects of the neuroimmune system. PA appears to increase the following factors: interleukin (IL)-10, IL-6 (acutely), macrophage migration inhibitory factor, central nervous system-specific autoreactive CD4+ T cells, M2 microglia, quiescent astrocytes, CX3CL1, and insulin-like growth factor-1. On the other hand, PA appears to reduce detrimental neuroimmune factors such as: Th1/Th2 balance, pro-inflammatory cytokines, C-reactive protein, M1 microglia, and reactive astrocytes. The effect of other mechanisms is unknown, such as: CD4+CD25+ T regulatory cells (T regs), CD200, chemokines, miRNA, M2-type blood-derived macrophages, and tumor necrosis factor (TNF)-α [via receptor 2 (R2)]. The beneficial effects of PA are likely to occur centrally and peripherally (e.g., in visceral fat reduction). The investigation of the neuroimmune effects of PA on depression and depression-like behavior is a rapidly developing and important field.
Collapse
Affiliation(s)
- Harris A Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide Adelaide, SA, Australia ; School of Medicine and Dentistry, James Cook University Townsville, QLD, Australia
| | | | | |
Collapse
|
29
|
Neuroimmunomodulation in unipolar depression: a focus on chronobiology and chronotherapeutics. J Neural Transm (Vienna) 2012; 119:1147-66. [PMID: 22653515 DOI: 10.1007/s00702-012-0819-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/05/2012] [Indexed: 12/21/2022]
Abstract
The rising burden of unipolar depression along with its often related sleep disturbances, as well as increasing rates of sleep restriction in modern society, make the search for an extended understanding of the aetiology and pathophysiology of depression necessary. Accumulating evidence suggests an important role for the immune system in mediating disrupted neurobiological and chronobiological processes in depression. This review aims to provide an overview of the neuroimmunomodulatory processes involved with depression and antidepressant treatments with a special focus on chronobiology, chronotherapeutics and the emerging field of immune-circadian bi-directional crosstalk. Increasing evidence suggests that chronobiological disruption can mediate immune changes in depression, and likewise, immune processes can mediate chronobiological disruption. This may suggest a bi-directional relationship in immune-circadian crosstalk. Furthermore, given the immunomodulatory effects of antidepressants and chronotherapeutics, as well as their associated beneficial effects on circadian disturbance, we--and others--suggest that these therapeutic agents may exert their chronobiotic effects partially via the neuroimmune system. Further research is required to better elucidate the mechanisms of immune involvement in the chronobiology of depression.
Collapse
|