1
|
Baumer Y, Irei J, Boisvert WA. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 2025; 22:315-332. [PMID: 39558130 DOI: 10.1038/s41569-024-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NIH, NHLBI, Bethesda, MD, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
2
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Mo P, Chen H, Jiang X, Hu F, Zhang F, Shan G, Chen W, Li S, Xu G. Effect of hepatic NPC1L1 on cholesterol gallstone disease and its mechanism. Heliyon 2023; 9:e15757. [PMID: 37159680 PMCID: PMC10163659 DOI: 10.1016/j.heliyon.2023.e15757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Xu
- Corresponding author. Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
4
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
5
|
Do GWAS and studies of heterozygotes for NPC1 and/or NPC2 explain why NPC disease cases are so rare? J Appl Genet 2018; 59:441-447. [PMID: 30209687 DOI: 10.1007/s13353-018-0465-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.
Collapse
|
6
|
Yamanashi Y, Takada T, Suzuki H. Associations between Lifestyle-Related Diseases and Transporters Involved in Intestinal Absorption and Biliary Excretion of Cholesterol. Biol Pharm Bull 2018; 41:1-10. [PMID: 29311470 DOI: 10.1248/bpb.b17-00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Westernization of dietary habits leads to an increase in lipid intake and is thought to be responsible for an increase in patients with dyslipidemia. It is a well-known fact that the impaired cholesterol homeostasis is closely related to the development of various lifestyle-related diseases such as fatty liver, diabetes, and gallstone as well as dyslipidemia leading to atherosclerosis and cardiovascular diseases such as heart attack and stroke. Therefore, appropriate management of cholesterol levels in the body is considered important in prevention and treatments of these lifestyle-related diseases and in addition, molecular mechanisms controlling plasma (and/or hepatic) cholesterol levels have been intensively studied. Due to its hydrophobicity, cholesterol was long believed to pass through cell membranes by passive diffusion. However, recent studies have identified a number of plasma membrane transporters that are responsible for the cellular uptake or efflux of cholesterol and involved in developments of lifestyle-related diseases. In this review, we focus on Niemann-Pick C1 Like 1 (NPC1L1) and a heterodimer of ATP-binding cassette transporter G5 and G8 (ABCG5/G8), both of which are responsible for intestinal cholesterol absorption and biliary cholesterol secretion, and discuss the relationship between these cholesterol transporters and lifestyle-related diseases. In addition, we also discuss the related uncertainties that need to be explored in future studies.
Collapse
Affiliation(s)
- Yoshihide Yamanashi
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Hiroshi Suzuki
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica ‘A. Murri’, University of Bari ‘Aldo Moro’ Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|