1
|
Su H, Zhou X, Lin G, Luo C, Meng W, Lv C, Chen Y, Wen Z, Li X, Wu Y, Xiao C, Yang J, Lu J, Luo X, Chen Y, Tam PKH, Li C, Sun H, Pan X. Deciphering the Oncogenic Landscape of Hepatocytes Through Integrated Single-Nucleus and Bulk RNA-Seq of Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412944. [PMID: 39960344 PMCID: PMC11984907 DOI: 10.1002/advs.202412944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/01/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality, while the hepatocyte mechanisms driving oncogenesis remains poorly understood. In this study, single-nucleus RNA sequencing of samples from 22 HCC patients revealed 10 distinct hepatocyte subtypes, including beneficial Hep0, predominantly malignant Hep2, and immunosuppressive Hep9. These subtypes were strongly associated with patient prognosis, confirmed in TCGA-LIHC and Fudan HCC cohorts through hepatocyte composition deconvolution. A quantile-based scoring method is developed to integrate data from 29 public HCC datasets, creating a Quantile Distribution Model (QDM) with excellent diagnostic accuracy (Area Under the Curve, AUC = 0.968-0.982). QDM was employed to screen potential biomarkers, revealing that PDE7B functions as a key gene whose suppression promotes HCC progression. Guided by the genes specific to Hep0/2/9 subtypes, HCC is categorized into metabolic, inflammatory, and matrix classes, which are distinguishable in gene mutation frequencies, survival times, enriched pathways, and immune infiltration. Meanwhile, the sensitive drugs of the three HCC classes are identified, namely ouabain, teniposide, and TG-101348. This study presents the largest single-cell hepatocyte dataset to date, offering transformative insights into hepatocarcinogenesis and a comprehensive framework for advancing HCC diagnostics, prognostics, and personalized treatment strategies.
Collapse
Affiliation(s)
- Huanhou Su
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Xuewen Zhou
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Chaochao Luo
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- College of Life SciencesShihezi UniversityShiheziXinjiang832003China
| | - Wei Meng
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Cui Lv
- Clinical Biobank CenterMicrobiome Medicine CenterDepartment of Laboratory MedicineGuangdong Provincial Clinical Research Center for Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yuting Chen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Zebin Wen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Xu Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Yongzhang Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Changtai Xiao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Jian Yang
- Department of Hepatobiliary Surgery IGeneral Surgery Center and Guangdong Provincial Clinical and Engineering Center of Digital MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Jiameng Lu
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Xingguang Luo
- Department of PsychiatryYale University School of MedicineNew HavenCT06510USA
| | - Yan Chen
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Paul KH Tam
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic SurgeryDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Haitao Sun
- Clinical Biobank CenterMicrobiome Medicine CenterDepartment of Laboratory MedicineGuangdong Provincial Clinical Research Center for Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xinghua Pan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
- Key Laboratory of Infectious Diseases Research in South China (China Ministry Education)Southern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
2
|
Lameirinhas A, Torres-Ruiz S, Garrido-Cano I, Hernando C, Martínez MT, Rovira A, Albanell J, Zazo S, Rojo F, Bermejo B, Lluch A, Cejalvo JM, Tormo E, Eroles P. Involvement of microRNAs-449/FASN axis in response to trastuzumab therapy in HER2-positive breast cancer. Mol Med 2025; 31:116. [PMID: 40133809 PMCID: PMC11938741 DOI: 10.1186/s10020-025-01163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The anti-HER2 monoclonal antibody trastuzumab and new derivative formulations are the standard treatment for HER2-positive breast cancer. However, after 1 to 5 years of treatment, some patients acquire resistance to therapy, leading to relapse. The microRNA-449 family members were downregulated in HER2-positive breast cancer cell lines and low levels were associated with patients' worse prognosis. Moreover, trastuzumab-resistant HER2-positive breast cancer cell lines showed lower microRNAs-449 and higher Fatty Acid Synthase (FASN) expression, compared to sensitive cell lines. The direct regulation of FASN by microRNA-449a and microRNA-449b-5p was demonstrated. Moreover, microRNAs-449 overexpression and FASN inhibition decreased cell proliferation and sensitized cells to trastuzumab treatment by inhibiting the PI3K/AKT signaling pathway. Together, these results suggest the microRNAs-449/FASN axis as a potential therapeutic target in combination with anti-HER2 agents to overcome trastuzumab resistance and to improve treatment response in HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Ana Lameirinhas
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
| | | | - Iris Garrido-Cano
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad Politécnica de València, Universidad de Valencia, Valencia, 46022, Spain
| | - Cristina Hernando
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, 46010, Spain
| | - María Teresa Martínez
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, 46010, Spain
| | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
- Department of Medical Oncology, Hospital del Mar, Barcelona, 08003, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, 08003, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
- Department of Medical Oncology, Hospital del Mar, Barcelona, 08003, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, 08003, Spain
| | - Sandra Zazo
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
- Department of Pathology, Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
- Department of Pathology, Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, 46010, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
| | - Ana Lluch
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, 46010, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
- Department of Medicine, Universidad de Valencia, Valencia, 46010, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, 46010, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain
| | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain.
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, 28019, Spain.
- Department of Physiology, Universidad de Valencia, Valencia, 46010, Spain.
| |
Collapse
|
3
|
Zhang Y, Chen D, Ang B, Deng X, Li B, Bai Y, Zhang Y. A necroptosis-regulated model from single-cell analysis that predicts survival and identifies the Pivotal role of MAGEA6 in hepatocellular carcinoma. Heliyon 2024; 10:e37711. [PMID: 39315163 PMCID: PMC11417173 DOI: 10.1016/j.heliyon.2024.e37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Youcheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Ang
- Department of Oncology, Tianjin First Central Hospital Clinic Institute, Tianjin 300192, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Li
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Yi Bai
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
4
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Torres-Ruiz S, Garrido-Cano I, Lameirinhas A, Burgués O, Hernando C, Martínez MT, Rojo F, Bermejo B, Tapia M, Carbonell-Asins JA, Peña CJ, Lluch A, Cejalvo JM, Tormo E, Eroles P. MiRNA-449 family is epigenetically repressed and sensitizes to doxorubicin through ACSL4 downregulation in triple-negative breast cancer. Cell Death Discov 2024; 10:372. [PMID: 39174500 PMCID: PMC11341569 DOI: 10.1038/s41420-024-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Despite progress in breast cancer treatment, a significant portion of patients still relapse because of drug resistance. The involvement of microRNAs in cancer progression and chemotherapy response is well established. Therefore, this study aimed to elucidate the dysregulation of the microRNA-449 family (specifically, microRNA-449a, microRNA-449b-5p, and microRNA-449c-5p) and its impact on resistance to doxorubicin, a commonly used chemotherapeutic drug for the treatment of triple-negative breast cancer. We found that the microRNA-449 family is downregulated in triple-negative breast cancer and demonstrated its potential as a diagnostic biomarker. Besides, our findings indicate that the downregulation of the microRNA-449 family is mediated by the microRNAs-449/SIRT1-HDAC1 negative feedback loop. Moreover, it was found that the microRNA-449 family dysregulates the fatty acid metabolism by targeting ACSL4, which is a potential prognostic biomarker that mediates doxorubicin response through regulation of the drug extrusion pump ABCG2. Altogether, our results suggest that the microRNA-449 family might be a potential therapeutic target for the treatment of triple-negative breast cancer since it is implicated in doxorubicin response through ACSL4/ABCG2 axis regulation. Ultimately, our results also highlight the value of microRNAs-449 and ACSL4 as diagnostic and prognostic biomarkers in triple-negative breast cancer. Proposed model of miRNAs-449 downregulation in TNBC and doxorubicin response. MiRNAs-449 are downregulated in TNBC through a negative feedback loop with SIRT1 and HDAC1. Moreover, ACSL4 increases ABCG2 expression, thus diminishing the intracellular doxorubicin concentration and promoting doxorubicin resistance. MiRNAs-449 overexpression downregulates the ACSL4/ABCG2 axis and sensitizes doxorubicin-resistant cells to doxorubicin. Created with BioRender. TNBC: triple-negative breast cancer; DOX: doxorubicin; SIRT1: Sirtuin 1; HDAC1: Histone deacetylase 1; ACSL4: Acyl-CoA Synthetase Long-Chain Family Member 4; ABCG2: ATP-binding cassette superfamily G member 2.
Collapse
Affiliation(s)
| | - Iris Garrido-Cano
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universidad politécnica de Valencia, Universidad de Valencia, Valencia, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Madrid, Spain
| | | | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, Hospital Clínico Universitario de València, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
| | - Cristina Hernando
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - María Teresa Martínez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Marta Tapia
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | | | | | - Ana Lluch
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
- Department of Medicine, Universidad de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
- Department of Physiology, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
8
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
9
|
Wang X, Zhang W, Wang Y, Zhu X, Liu Z, Liu M, Wu Z, Li B, Liu S, Liao S, Zhu P, Liu B, Li C, Wang Y, Chen Z. Logic "AND Gate Circuit"-Based Gasdermin Protein Expressing Nanoplatform Induces Tumor-Specific Pyroptosis to Enhance Cancer Immunotherapy. ACS NANO 2024; 18:6946-6962. [PMID: 38377037 DOI: 10.1021/acsnano.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meiyi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zixian Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shixin Liao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Benyu Liu
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhongke Jianlan Medical Research Institute, Beijing 100190, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Abdolahi M, Ghaedi Talkhounche P, Derakhshan Nazari MH, Hosseininia HS, Khoshdel-Rad N, Ebrahimi Sadrabadi A. Functional Enrichment Analysis of Tumor Microenvironment-Driven Molecular Alterations That Facilitate Epithelial-to-Mesenchymal Transition and Distant Metastasis. Bioinform Biol Insights 2024; 18:11779322241227722. [PMID: 38318286 PMCID: PMC10840405 DOI: 10.1177/11779322241227722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.
Collapse
Affiliation(s)
- Mahnaz Abdolahi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Derakhshan Nazari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Islamic Azad University of Medical Sciences, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
| |
Collapse
|
11
|
Li L, Zhang Y, Yang K, Liu W, Zhou Z, Xu Y. miRNA-449c-5p regulates the JAK-STAT pathway in inhibiting cell proliferation and invasion in human breast cancer cells by targeting ERBB2. Cancer Rep (Hoboken) 2024; 7:e1974. [PMID: 38351535 PMCID: PMC10864726 DOI: 10.1002/cnr2.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Breast cancer is a highly prevalent disease worldwide, and early diagnosis and treatment could reduce the mortality rate of breast cancer patients. microRNAs (miRNA) have been shown to regulate the occurrences and progression of many types of cancers. Thus, it is crucial to find novel biomarkers in breast cancer. miR-449c-5p acted as a biomarker in non-small cell lung cancer, gastric carcinoma, and so forth. ERBB2 is an ideal target for breast cancer therapy. However, the molecular mechanisms between miR-449c-5p and ERBB2 in breast cancer remain poorly understood. Our study focused on the regulatory role of miR-449c-5p in breast cancer and its targeting relationship with ERBB2. METHODS The miR-449c-5p expression in breast cancer tissue and normal tissue was searched from the online database (Starbase). The clinical prognosis of miR-449c-5p and ERBB2 was predicted by using the Kaplan-Meier analysis method. The expression of miR-449c-5p mimics and inhibitors was measured by qRT-PCR. T47D cells were transfected with miR-449c-5p mimics and miR-449c-5p inhibitors. After that, CCK-8, colony formation assays and Transwell assays were used to evaluate the cell proliferation ability, migration and invasion. Whether ERBB2 was the target gene of the miR-449c-5p was predicted by Starbase and verified by dual-luciferase activity assay. In addition, protein levels and the relationship between signalling pathways were measured and validated using western blotting analysis. RESULTS We confirmed that miR-449c-5p was highly expressed in breast cancer tissue, and its downregulation was linked with poor prognosis. Overexpression of miR-449c-5p inhibited the proliferation, migration and invasion of breast cancer cells. ERBB2 was a target of miR-449c-5p. The invasion, migration, and proliferation of breast cancer cells were inhibited by miR-449c-5p/ERBB2 through JAK-STAT. CONCLUSION This study demonstrated that miR-449c-5p inhibits breast cancer cell proliferation, migration and invasion by targeting ERBB2 via JAK/STAT, which means miR-449c-5p, is a potential biomarker for breast cancer and provides a novel insight for diagnosis.
Collapse
Affiliation(s)
- Li Li
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Yangqiurong Zhang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Wei Liu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ziting Zhou
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ying Xu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| |
Collapse
|
12
|
Lu XJ, Gao WW, Li JC, Qin SF. miRNA-381 regulates renal cancer stem cell properties and sunitinib resistance via targeting SOX4. Biochem Biophys Rep 2023; 36:101566. [PMID: 37965067 PMCID: PMC10641571 DOI: 10.1016/j.bbrep.2023.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Cancer stem cells (CSCs) are crucial in the pathogenesis of human cancers. Existing studies reported that microRNA (miRNA) modulates the stemness of CSCs. We discovered that renal cell CSCs have suppressed miR-381. Suppression of miR-381 promotes renal cell tumorigenesis and CSC-like properties. Furthermore, the forced expression of miR-381 prevents the renal cell tumorigenesis and CSC-like properties. Mechanistically, renal cell CSCs have been found to interact with SOX4 through miR-381 directly. miR-381 inhibits renal cell CSC-like properties and tumorigenesis via downregulating SOX4. Examination of the patient-derived xenografts (PDX) and patient cohorts reveals that miR-381 may be able to forecast the advantages of Sunitinib in RCC patients. Moreover, the introduction of SOX4 could reverse the sensitivity of miR-381 overexpression RCC cells to Sunitinib-induced cell apoptosis. These results indicated that miR-381 is critical in renal cell CSC-like properties and tumorigenesis, making it the ideal therapeutic target for RCC.
Collapse
Affiliation(s)
- Xiao-jun Lu
- Department of Urology, Shanghai FourthPeople's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Wen-wen Gao
- Department of Oncology, Shidong Hospital, Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jia-cheng Li
- Department of Urology, Shanghai FourthPeople's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Sheng-Fei Qin
- Department of Urology, Shanghai FourthPeople's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
13
|
Bin S, Xinyi F, Huan P, Xiaoqin Z, Jiming W, Yi H, Ziyue L, Xiaochun Z, Zhouqi L, Bangwei Z, Jing J, Shihui L, Jinlai G. SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. Eur J Pharmacol 2023; 958:176071. [PMID: 37741429 DOI: 10.1016/j.ejphar.2023.176071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Pathological cardiac hypertrophy can lead to heart failure, making its prevention crucial. SOX4, a SOX transcription factor, regulates tissue growth and development, although its role in pathological cardiac hypertrophy is unclear. We found that the SOX4 expression was elevated in hypertrophic hearts and angiotensin II (Ang II)-treated neonatal rat cardiomyocytes (NRCMs), and knocking down the SOX4 expression in NRCMs and mouse hearts significantly reduced the hypertrophic response. Mechanistically, SOX4 can bind to the SIRT3 promoter, inhibit SIRT3 transcription and expression, and thus affect downstream MnSOD acetylation levels, leading to abnormal increases in ROS and oxidative stress levels and promoting the occurrence of cardiac hypertrophy. In conclusion, this study identified a new role for SOX4 in regulating cardiac hypertrophy, and decreasing SOX4 expression may be a potential treatment for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shen Bin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Feng Xinyi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Pan Huan
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhang Xiaoqin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Wu Jiming
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - He Yi
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China; Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Li Ziyue
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zou Xiaochun
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Lu Zhouqi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zhou Bangwei
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Jin Jing
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Liu Shihui
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| | - Gao Jinlai
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
14
|
Liu HT, Luo CP, Jiang MJ, Deng ZJ, Teng YX, Su JY, Pan LX, Ma L, Guo PP, Zhong JH. miR-17-5p slows progression of hepatocellular carcinoma by downregulating TGFβR2. Clin Transl Oncol 2023; 25:2960-2971. [PMID: 37024636 DOI: 10.1007/s12094-023-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Downregulation of miR-17-5p has been reported in several cancers, but whether and how miR-17-5p is downregulated in hepatocellular carcinoma (HCC) is unknown. Here, we examined whether miR-17-5p is downregulated in HCC and whether that affects expression of its target gene encoding transforming growth factor β receptor 2 (TGFβR). METHODS We screened for potential microRNAs (miRNAs) involved in HCC by analyzing published transcriptomes from HCC patients. Expression of miR-17-5p was measured in HCC cell lines and in tissues from HCC patients using quantitative real-time PCR. The in vitro effects of miR-17-5p on HCC cells were assessed by EdU proliferation assay, CCK-8 cell proliferation assay, colony-formation assay, transwell migration/invasion assay, wound healing assay, and flow cytometry. Effects of miR-17-5p were evaluated in vivo using mice with subcutaneous tumors. Effects of the miRNA on the epithelial-mesenchymal transition (EMT) were assessed, while its effects on TGFβR2 expression were analyzed using bioinformatics and a dual luciferase reporter assay. RESULTS Patients with low miR-17-5p expression showed lower rates of overall and recurrence-free survival than patients with high miR-17-5p expression, and multivariate Cox regression identified low miR-17-5p expression as an independent predictor of poor overall survival in HCC patients. In vitro, miR-17-5p significantly inhibited HCC cell proliferation, migration, invasion, and the EMT, while promoting apoptosis. In vivo, it slowed the development of tumors. These protective effects of miR-17-5p were associated with downregulation of TGFβR2. CONCLUSION The miRNA miR-17-5p can negatively regulate the expression of TGFβR2 and inhibit the EMT, thereby slowing tumor growth in HCC, suggesting a potential therapeutic approach against HCC.
Collapse
Affiliation(s)
- Hao-Tian Liu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Cheng-Piao Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meng-Jie Jiang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Yu-Xian Teng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Li-Xin Pan
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Liang Ma
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China
| | - Ping-Ping Guo
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China.
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Nanning, China.
| |
Collapse
|
15
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
16
|
Naydenov M, Nikolova M, Apostolov A, Glogovitis I, Salumets A, Baev V, Yahubyan G. The Dynamics of miR-449a/c Expression during Uterine Cycles Are Associated with Endometrial Development. BIOLOGY 2022; 12:biology12010055. [PMID: 36671747 PMCID: PMC9855972 DOI: 10.3390/biology12010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The human endometrium is a highly dynamic tissue. Increasing evidence has shown that microRNAs (miRs) play essential roles in human endometrium development. Our previous assay, based on small RNA-sequencing (sRNA-seq) indicated the complexity and dynamics of numerous sequence variants of miRs (isomiRs) that can act together to control genes of functional relevance to the receptive endometrium (RE). Here, we used a greater average depth of sRNA-seq to detect poorly expressed small RNAs. The sequencing data confirmed the up-regulation of miR-449c and uncovered other members of the miR-449 family up-regulated in RE-among them miR-449a, as well as several isoforms of both miR-449a and miR-449c, while the third family member, miR-449b, was not identified. Stem-looped RT-qPCR analysis of miR expression at four-time points of the endometrial cycle verified the increased expression of the miR-449a/c family members in RE, among which the 5' isoform of miR-449c-miR-449c.1 was the most strongly up-regulated. Moreover, we found in a case study that the expression of miR-449c.1 and its precursor correlated with the histological assessment of the endometrial phase and patient age. We believe this study will promote the clinical investigation and application of the miR-449 family in the diagnosis and prognosis of human reproductive diseases.
Collapse
Affiliation(s)
- Mladen Naydenov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Maria Nikolova
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Center for Women’s Health, 4000 Plovdiv, Bulgaria
| | - Apostol Apostolov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
| | - Ilias Glogovitis
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Andres Salumets
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital, 14186 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vesselin Baev
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
17
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Zhou Q, Shaya M, Kugeluke Y, Fu Q, Li S, Dilimulati Y. A circular RNA derived from GLIS3 accelerates the proliferation of glioblastoma cells through competitively binding with miR-449c-5p to upregulate CAPG and GLIS3. BMC Neurosci 2022; 23:53. [PMID: 36114444 PMCID: PMC9479268 DOI: 10.1186/s12868-022-00736-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glioblastoma (GBM) is an aggressive and malignant brain tumor with extremely poor prognosis. Despite advances in treatment, the pathogenesis of GBM remains elusive. Mounting studies have revealed the critical role of circular RNAs (circRNAs) in the development and progression of human cancers including GBM, but the comprehension of their functions is still insufficient. In this study, we investigated the expression profile of a circRNA derived from GLIS family zinc finger 3 (GLIS3) in GBM and normal astrocytes. CircGLIS3 expression was detected through quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Functional experiments were performed to analyze the influence of circGLIS3 on GBM cell proliferation and apoptosis. In addition, mechanism assays were to uncover the potential regulatory mechanism of circGLIS3. Results CircGLIS3 was up-regulated in GBM cells and knockdown of circGLIS3 significantly hampered proliferation and promoted apoptosis of GBM cells. Furthermore, circGLIS3 positively regulated CAPG and GLIS3 by sponging miR-449c-5p to affect GBM cell proliferation and apoptosis. Conclusions In summary, our study identified that circGLIS3 could promote proliferation and inhibit apoptosis of GBM cells via targeting miR-449c-5p/GLIS3/CAPG axis in vitro. This study could offer a novel molecular perspective for further investigation into mechanisms essential to GBM progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00736-6.
Collapse
|
19
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
S-Adenosylmethionine Inhibits Colorectal Cancer Cell Migration through Mirna-Mediated Targeting of Notch Signaling Pathway. Int J Mol Sci 2022; 23:ijms23147673. [PMID: 35887021 PMCID: PMC9320859 DOI: 10.3390/ijms23147673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.
Collapse
|
21
|
Hu H, Huang W, Zhang H, Li J, Zhang Q, Miao YR, Hu FF, Gan L, Su Z, Yang X, Guo AY. A miR-9-5p/FOXO1/CPEB3 Feed-Forward Loop Drives the Progression of Hepatocellular Carcinoma. Cells 2022; 11:cells11132116. [PMID: 35805200 PMCID: PMC9265408 DOI: 10.3390/cells11132116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, but its regulatory mechanism remains unclear and potential clinical biomarkers are still lacking. Co-regulation of TFs and miRNAs in HCC and FFL module studies may help to identify more precise and critical driver modules in HCC development. Here, we performed a comprehensive gene expression and regulation analysis for HCC in vitro and in vivo. Transcription factor and miRNA co-regulatory networks for differentially expressed genes between tumors and adjacent tissues revealed the critical feed-forward loop (FFL) regulatory module miR-9-5p/FOXO1/CPEB3 in HCC. Gain- and loss-of-function studies demonstrated that miR-9-5p promotes HCC tumor proliferation, while FOXO1 and CPEB3 inhibit hepatocarcinoma growth. Furthermore, by luciferase reporter assay and ChIP-Seq data, CPEB3 was for the first time identified as a direct downstream target of FOXO1, negatively regulated by miR-9-5p. The miR-9-5p/FOXO1/CPEB3 FFL was associated with poor prognosis, and promoted cell growth and tumor progression of HCC in vitro and in vivo. Our study identified for the first time the existence of miR-9-5p/FOXO1/CPEB3 FFL and revealed its regulatory role in HCC progression, which may represent a new potential target for cancer therapy.
Collapse
Affiliation(s)
- Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhang
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan 430060, China;
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Fei-Fei Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Medical College, Hubei Polytechnic University, Huangshi 435000, China;
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- Correspondence: (X.Y.); (A.-Y.G.)
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
- Correspondence: (X.Y.); (A.-Y.G.)
| |
Collapse
|
22
|
Huge N, Reinkens T, Buurman R, Sandbothe M, Bergmann A, Wallaschek H, Vajen B, Stalke A, Decker M, Eilers M, Schäffer V, Dittrich-Breiholz O, Gürlevik E, Kühnel F, Schlegelberger B, Illig T, Skawran B. MiR-129-5p exerts Wnt signaling-dependent tumor-suppressive functions in hepatocellular carcinoma by directly targeting hepatoma-derived growth factor HDGF. Cancer Cell Int 2022; 22:192. [PMID: 35578240 PMCID: PMC9109340 DOI: 10.1186/s12935-022-02582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis. METHODS Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined. RESULTS HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs. CONCLUSIONS This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.
Collapse
Affiliation(s)
- Nicole Huge
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Reena Buurman
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maria Sandbothe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Anke Bergmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Melanie Decker
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | - Engin Gürlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Vajen B, Bhowmick R, Greiwe L, Schäffer V, Eilers M, Reinkens T, Stalke A, Schmidt G, Fiedler J, Thum T, DeLuca DS, Hickson ID, Schlegelberger B, Illig T, Skawran B. MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation. Int J Mol Sci 2022; 23:ijms23095131. [PMID: 35563522 PMCID: PMC9102308 DOI: 10.3390/ijms23095131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms: (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC.
Collapse
Affiliation(s)
- Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
- Correspondence: ; Tel.: +49-511-5328-0831
| | - Rahul Bhowmick
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark; (R.B.); (I.D.H.)
| | - Luisa Greiwe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (J.F.); (T.T.)
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (J.F.); (T.T.)
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany
| | - David S. DeLuca
- German Center for Lung Research (BREATH), Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany;
| | - Ian D. Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark; (R.B.); (I.D.H.)
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30629 Hannover, Germany; (L.G.); (V.S.); (M.E.); (T.R.); (A.S.); (G.S.); (B.S.); (T.I.); (B.S.)
| |
Collapse
|
24
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
25
|
Reinkens T, Stalke A, Huge N, Vajen B, Eilers M, Schäffer V, Dittrich-Breiholz O, Schlegelberger B, Illig T, Skawran B. Ago-RIP Sequencing Identifies New MicroRNA-449a-5p Target Genes Increasing Sorafenib Efficacy in Hepatocellular Carcinoma. J Cancer 2022; 13:62-75. [PMID: 34976171 PMCID: PMC8692677 DOI: 10.7150/jca.66016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Patients with hepatocellular carcinoma (HCC) have very limited treatment options. For the last fourteen years, the multi-tyrosine kinase inhibitor sorafenib has been used as standard-of-care therapeutic agent in advanced HCC. Unfortunately, drug resistance develops in many cases. Therefore, we aimed to find a way to mitigate drug resistance and to improve the sorafenib efficacy in HCC cells. MicroRNAs play a significant role in targeting genes involved in tumor control suggesting microRNA/sorafenib combination therapy as a promising treatment option in advanced HCC. METHODS: MiR-449a-5p target genes were identified by Ago-RIP sequencing and validated by luciferase reporter assays and expression analyses. Target gene expression and survival data were analyzed in public HCC datasets. Tumor-relevant functional effects of miR-449a-5p and its target genes as well as their impact on the effects of sorafenib were analyzed using in vitro assays. An indirect transwell co-culture system was used to survey anti-angiogenic effects of miR-449a-5p. RESULTS: PEA15, PPP1CA and TUFT1 were identified as direct target genes of miR-449a-5p. Overexpression of these genes correlated with a poor outcome of HCC patients. Transfection with miR-449a-5p and repression of miR-449a-5p target genes inhibited cell proliferation and angiogenesis, induced apoptosis and reduced AKT and ERK signaling in HLE and Huh7 cells. Importantly, miR-449a-5p potentiated the efficacy of sorafenib in HCC cells via downregulation of PEA15, PPP1CA and TUFT1. CONCLUSIONS: This study provides detailed insights into the targetome and regulatory network of miR-449a-5p. Our results demonstrate for the first time that targeting PEA15, PPP1CA and TUFT1 via miR-449a overexpression could have significant implications in counteracting sorafenib resistance suggesting miR-449a-5p as a promising candidate for a microRNA/sorafenib combination therapy.
Collapse
Affiliation(s)
- Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Huge
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Tang K, Wu Z, Sun M, Huang X, Sun J, Shi J, Wang X, Miao Z, Gao P, Song Y, Wang Z. Elevated MMP10/13 mediated barrier disruption and NF-κB activation aggravate colitis and colon tumorigenesis in both individual or full miR-148/152 family knockout mice. Cancer Lett 2022; 529:53-69. [PMID: 34979166 DOI: 10.1016/j.canlet.2021.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Dynamic miRNA alteration is known to occur in colitis-associated colon cancer (CAC), while the molecular mechanisms underpinning how miRNAs modulate the development from chronic inflammation to CAC is lacking. For the first time, we constructed knockout (KO) mice for individual miR-148/152 family members and entire miR-148/152 family. Based on these KO mice, we conduct the first comprehensive analysis of miR-148/152 family, demonstrating that deficiency of any member of miR-148/152 family aggravate colitis and CAC. Loss of individual miR-148/152 family members or full-family enhance MMP10 and MMP13 expression, causing disruption of intestinal barrier and cleaving pro-TNF-α into bioactive TNF-α fragments to activate NF-κB signaling, thereby aggravating colitis. Individual and full-family deletion also increase accumulation of IKKα and IKKβ, resulting in further hyperactivation of NF-κB signaling, exacerbating colitis and CAC. Moreover, blocking NF-κB signaling exerts a restorative effect on colitis and CAC models only in KO mice. Taken together, these findings demonstrate deleting the full miR-148/152 family or individual members exhibit similar effects in colitis and CAC. Mechanically, miR-148/152 family members deficiency in mice elevates MMP10 and MMP13 to accelerate colitis and CAC via disrupting intestinal barrier function and activating NF-κB signaling, suggesting a potential therapeutic strategy for colitis and CAC.
Collapse
Affiliation(s)
- Kaiwen Tang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Mingwei Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jinxin Shi
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| |
Collapse
|
27
|
Coupling miR/isomiR and mRNA Expression Signatures Unveils New Molecular Layers of Endometrial Receptivity. Life (Basel) 2021; 11:life11121391. [PMID: 34947922 PMCID: PMC8705090 DOI: 10.3390/life11121391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Embryo implantation depends on endometrial receptivity (ER). To achieve ER, the preparation of the uterine lining requires controlled priming by ovarian hormones and the expression of numerous genes in the endometrial tissue. microRNAs (miRs) have emerged as critical genetic regulators of ER in fertility and of the diseases that are associated with infertility. With the rapid development of next-generation sequencing technologies, it has become clear that miR genes can produce canonical miRs and variants—isomiRs. Here, we describe miR/isomiR expression dynamics across the four time points of natural chorionic gonadotropin (hCG)-administered cycles. Sequencing of the small RNAs (sRNA-seq) revealed that the most significant expression changes during the transition from the pre-receptive to the receptive phase occurred in the isomiR families of miR-125a, miR-125b, miR-10a, miR-10b, miR-449c, miR-92a, miR-92b, and miR-99a. Pairing the analysis of the differentially expressed (DE) miRs/isomiRs and their predicted DE mRNA targets uncovered 280 negatively correlating pairs. In the receptive endometrium, the 5′3′-isomiRs of miR-449c, which were among the most highly up-regulated isomiRs, showed a negative correlation with their target, transcription factor (TF) MYCN, which was down-regulated. Joint analysis of the miR/isomiR and TF expression identified several regulatory interactions. Based on these data, a regulatory TF-miR/isomiR gene-target circuit including let7g-5p and miR-345; the isomiR families of miR-10a, miR-10b, miR-92a, and miR-449c; and MYCN and TWIST1 was proposed to play a key role in the establishment of ER. Our work uncovers the complexity and dynamics of the endometrial isomiRs that can act cooperatively with miRs to control the functionally important genes that are critical to ER. Further studies of miR/isomiR expression patterns that are paired with those of their target mRNAs may provide a more in-depth picture of the endometrial pathologies that are associated with implantation failure.
Collapse
|
28
|
Oliveira-Jr GP, Barbosa RH, Thompson L, Pinckney B, Murphy-Thornley M, Lu S, Jones J, Hansen CH, Tigges J, Wong WP, Ghiran IC. Electrophoretic mobility shift as a molecular beacon-based readout for miRNA detection. Biosens Bioelectron 2021; 189:113307. [PMID: 34062334 PMCID: PMC8461749 DOI: 10.1016/j.bios.2021.113307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs are short, non-coding RNA sequences involved in gene expression regulation. Quantification of miRNAs in biological fluids involves time consuming and laborious methods such as Northern blotting or PCR-based techniques. Molecular beacons (MB) are an attractive means for rapid detection of miRNAs, although the need for sophisticated readout methods limits their use in research and clinical settings. Here, we introduce a novel method based on delayed electrophoretic mobility, as a quantitative means for detection of miRNAs-MB hybridization. Upon hybridization with the target miRNAs, MB form a fluorescent duplex with reduced electrophoretic mobility, thus bypassing the need for additional staining. In addition to emission of light, the location of the fluorescent band on the gel acts as an orthogonal validation of the target identity, further confirming the specificity of binding. The limit of detection of this approach is approximately 100 pM, depending on the MB sequence. The method is sensitive enough to detect specific red blood cell miRNAs molecules in total RNA, with single nucleotide specificity. Altogether, we describe a rapid and affordable method that offers sensitive detection of single-stranded small DNA and RNA sequences.
Collapse
Affiliation(s)
- Getulio P Oliveira-Jr
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Raquel H Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lauren Thompson
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Brandy Pinckney
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Moriah Murphy-Thornley
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jennifer Jones
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Clinton H Hansen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John Tigges
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ionita C Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
29
|
Vajen B, Greiwe L, Schäffer V, Eilers M, Huge N, Stalke A, Schlegelberger B, Illig T, Skawran B. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19. Genes Chromosomes Cancer 2021; 60:733-742. [PMID: 34296808 DOI: 10.1002/gcc.22982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023] Open
Abstract
Among the different breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with a poor prognosis, low survival rates, and high expression of histone deacetylases. Treatment with histone deacetylase inhibitor trichostatin A (TSA) leads to an increased expression of potential tumor-suppressive miRNAs. Characterization of these miRNAs can help to find new molecular targets for treatment of TNBC. We identified differentially expressed miRNAs by microarray analyses after treatment with TSA in the TNBC cell lines HCC38, HCC1395, and HCC1935. The gene locus of hsa-miRNA-192-5p (miR-192) and hsa-miR-194-2 (miR-194-2) with its host gene, long noncoding RNA miR-194-2HG, has been linked to inhibition of migration in different tumor types. Therefore, we examined tumor-relevant functional effects using WST-1-based proliferation, capsase-3/7-based apoptosis, and trans-well migration assays after transfection with miRNA mimics or specific siRNAs. We demonstrated the tumor-suppressive capacity of miR-192 in TNBC cells, which was exerted through inhibition of proliferation, induction of apoptosis, and reduction of migration. Gene expression and bioinformatics analyses of TNBC cell lines transfected with miR-192 mimics, identified a number of genes involved in migration including the Rho GTPase Activating Protein ARHGAP19. Through RNA immunoprecipitation we demonstrated the direct binding of miR-192 and ARHGAP19. Downregulation of ARHGAP19 expression by either miR-192 or siRNA inhibited migration of TNBC cells significantly. Our findings demonstrate that overexpression of epigenetically deregulated miR-192 decreases proliferation, promotes apoptosis, and inhibits migration of TNBC cell lines.
Collapse
Affiliation(s)
- Beate Vajen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Luisa Greiwe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Huge
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
The Sex-Related Interplay between TME and Cancer: On the Critical Role of Estrogen, MicroRNAs and Autophagy. Cancers (Basel) 2021; 13:cancers13133287. [PMID: 34209162 PMCID: PMC8267629 DOI: 10.3390/cancers13133287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.
Collapse
|
31
|
Integrated bioinformatics analysis revealed the regulation of angiogenesis by tumor cells in hepatocellular carcinoma. Biosci Rep 2021; 41:229066. [PMID: 34151937 PMCID: PMC8252189 DOI: 10.1042/bsr20210126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their microRNA (miRNA) expression remains largely unknown. Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then used online tools to obtain potential targets of candidate miRNAs and functional enrichment analysis, as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay. In the current study, we found that HCC cells altered miRNA expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most down-regulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, cytosine methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most down-regulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.
Collapse
|
32
|
Huang PS, Chang CC, Wang CS, Lin KH. Functional roles of non-coding RNAs regulated by thyroid hormones in liver cancer. Biomed J 2021; 44:272-284. [PMID: 33077406 PMCID: PMC8358202 DOI: 10.1016/j.bj.2020.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown the important role of the non-coding part of human genome RNA (ncRNA) in cancer formation and progression. Among several kinds of ncRNAs, microRNAs (miRNA) play a pivotal role in cancer biology. Accumulating researches have been focused on the importance of non-coding genes in various diseases. In addition to miRNAs, long non-coding RNAs (lncRNAs) have also been extensively documented. Recently, the study of human liver cancer has gradually shifted to these non-coding RNAs that were originally considered "junk". Notably, dysregulated ncRNAs maybe influence on cell proliferation, angiogenesis, anti-apoptosis, and metastasis. Thyroid hormones play critical roles in human development and abnormalities in thyroid hormone levels are associated with various diseases, such as liver cancer. Thyroid hormone receptors (TR) act as ligand-activated nuclear transcription factors to affect multiple functions through the gene-level regulation in the cells and several studies have revealed that thyroid hormone associated with ncRNAs expression. TR actions are complex and tissue- and time-specific, aberrant expression of the various TR isoforms have different effects and are associated with different types of tumor or stages of development. In this review, we discuss various aspects of the research on the thyroid hormones modulated ncRNAs to affect the functions of human liver cells.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
33
|
Zeng F, Yao M, Wang Y, Zheng W, Liu S, Hou Z, Cheng X, Sun S, Li T, Zhao H, Luo Y, Li J. Fatty acid β-oxidation promotes breast cancer stemness and metastasis via the miRNA-328-3p-CPT1A pathway. Cancer Gene Ther 2021; 29:383-395. [PMID: 34045663 PMCID: PMC8940624 DOI: 10.1038/s41417-021-00348-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNA) have been shown to be associated with tumor diagnosis, prognosis, and therapeutic response. MiR-328-3p plays a significant role in breast cancer growth; however, its actual function and how it modulates specific biological functions is poorly understood. Here, miR-328-3p was significantly downregulated in breast cancer, especially in patients with metastasis. Mitochondrial carnitine palmitoyl transferase 1a (CPT1A) is a downstream target gene in the miR-328-3p-regulated pathway. Furthermore, the miR-328-3p/CPT1A/fatty acid β-oxidation/stemness axis was shown responsible for breast cancer metastasis. Collectively, this study revealed that miR-328-3p is a potential therapeutic target for the treatment of breast cancer patients with metastasis, and also a model for the miRNA-fatty acid β-oxidation-stemness axis, which may assist inunderstanding the cancer stem cell signaling functions of miRNA.
Collapse
Affiliation(s)
- Feng Zeng
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Thyroid and Breast Surgery, The second Affiliated Hospital of Zunyi Medical University, Intersection of Xinpu Avenue and Xinlong Avenue in Xinpu New District, Zunyi, Guizhou, China
| | - Mingkang Yao
- Respiratory medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Wang
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zheng
- Zhongshan Medical College of Sun Yat-sen University, Guangzhou, China
| | - Shengshan Liu
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zeyu Hou
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoming Cheng
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Suhong Sun
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Taolang Li
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongyuan Zhao
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Luo
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiang Li
- Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
34
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
35
|
Xu X, Zong K, Wang X, Dou D, Lv P, Zhang Z, Li H. miR-30d suppresses proliferation and invasiveness of pancreatic cancer by targeting the SOX4/PI3K-AKT axis and predicts poor outcome. Cell Death Dis 2021; 12:350. [PMID: 33824274 PMCID: PMC8024348 DOI: 10.1038/s41419-021-03576-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022]
Abstract
Aberrant expression of miR-30d is associated with the development and progression of several human cancers. However, its biological roles and underlying mechanisms in pancreatic cancer are largely unknown. The expression of miR-30d in pancreatic cancer was evaluated in public databases and further valuated by real-time quantitative PCR, western blot, and immunohistochemistry in a cohort of pancreatic cancer patients. The role of miR-30d in the proliferation and metastasis of pancreatic cancer cells was determined using in vitro and in vivo assays. Bioinformatics analyses were performed to examine potential target genes of miR-30d. Luciferase reporter assay and functional rescue experiments were used to elucidate the mechanisms of miR-30d. miR-30d was found frequently decreased in pancreatic cancer compared with nontumor tissues, and downregulation of miR-30d predicted poor prognosis and early relapse of pancreatic cancer patients. Overexpression of miR-30d significantly repressed the growth and metastasis of pancreatic cancer cells both in vitro and in vivo. Bioinformatics analyses identified sex-determining region Y-box 4 (SOX4) as a target gene of miR-30d. Mechanically, miR-30d exerted its tumor suppressive effect by directly targeting SOX4, which caused inhibition of the PI3K-AKT signaling pathway. Overexpression of SOX4 partially antagonized the inhibitory effects of miR-30d. Our study demonstrated that dysregulation of the miR-30d/SOX4/PI3K-AKT axis promotes the development and progression of pancreatic cancer. These findings suggest miR-30d as a promising and reliable therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China
| | - Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China
| | - Pengwei Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China.
| | - Zhe Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China.
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe east Road, 450000, Zhengzhou, China.
| |
Collapse
|
36
|
Zhou W, Zhu Q, Shen J. miRNA-491-5p Inhibited Cell Proliferation in Human Hepatocellular Carcinoma Through Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miRNA-491-5p was a short, noncoding RNA, usually down-expressed in various human tumors and regulated biological functions. However, the connection between miRNA-491-5p and hepatocellular carcinoma (HCC) remained unclear. Therefore, the role of miRNA-491-5p played in HCC has been detected
in this research. The results indicate that miRNA-491-5p is obviously diminished in tissues and cells of HCC (P < 0.001; P < 0.05). After miRNA-491-5p over-expressing, cell multiplication as well as invasion viability were significantly inhibited (P < 0.01). Double luciferase
reporter gene detection system demonstrated epidermal growth factor receptor (EGFR) gene was considered directly target miR-491-5p, along with suppressed EGFR was observed in cells over-expressed miRNA-491-5p. Moreover, miRNA-491-5p functioned via the PI3K/Akt signaling pathway. Generally,
this study illustrated that miRNA-491-5p promoted HCC progression via PI3K/Akt signaling pathway targeting EGFR, while miRNA-491-5p mimicking therapeutics may provide viable avenue for the medication of HCC.
Collapse
Affiliation(s)
- Weike Zhou
- Department of General Surgery, Zhuji Sixth People’s Hospital, Zhuji, Zhejiang, 311801, China
| | - Qian Zhu
- Department of General Surgery, Zhuji Sixth People’s Hospital, Zhuji, Zhejiang, 311801, China
| | - Jiang Shen
- Department of General Surgery, Zhuji People’s Hospital, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
37
|
Zhang N, Qiu L, Li T, Wang X, Deng R, Yi H, Su Y, Fan FY. MiR-449a attenuates autophagy of T-cell lymphoma cells by downregulating ATG4B expression. BMB Rep 2021. [PMID: 32172731 PMCID: PMC7262515 DOI: 10.5483/bmbrep.2020.53.5.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence suggests the role of miR-449a in the regulation of tumorigenesis and autophagy. Autophagy plays an important role in the malignancy of T-cell lymphoma. However, it is still unknown whether miR-449a is associated with autophagy to regulate the malignancy of T-cell lymp homa. In this study, we for the first time demonstrated that miR-449a enhanced apoptosis of T-cell lymphoma cells by decreasing the degree of autophagy. Further, miR-449a downregulated autophagy-associated 4B (ATG4B) expression, which subsequently reduced the autophagy of T-cell lymphoma cells. Mechanistically, miR-449a decreased ATG4B protein level by binding to its mRNA 3’UTR, thus reducing the mRNA stability. In addition, studies with nude mice showed that miR-449a significantly inhibited lymphoma characteristics in vivo. In conclusion, our results demonstrated that the “miR-449a/ATG4B/autophagy” pathway played a vital role in the malignancy of T-cell lymphoma, suggesting a novel therapeutic target.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ling Qiu
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiao Wang
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Rui Deng
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hai Yi
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yi Su
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fang-Yi Fan
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
38
|
Gu Y, Wu F, Wang H, Chang J, Wang Y, Li X. Circular RNA circARPP21 Acts as a Sponge of miR-543 to Suppress Hepatocellular Carcinoma by Regulating LIFR. Onco Targets Ther 2021; 14:879-890. [PMID: 33584097 PMCID: PMC7874301 DOI: 10.2147/ott.s283026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/01/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A large body of evidence has shown that circular RNAs (circRNAs) play a significant role in the progression of some malignant cancers, including hepatocellular carcinoma (HCC). However, the complex mechanism of circRNAs in hepatocellular carcinoma has not been clarified. METHODS We identified circRNAs by microarray analysis and quantitative real-time polymerase chain reaction (RT-qPCR). We also carried out bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays to define the relationship between microRNA (miR)-543 and circARPP21. Through silencing and overexpression of circARPP21, we investigated the effects of circARPP21 on proliferation, migration, and invasion abilities of HCC cells in vitro and in vivo. RESULTS In this study, we found that a novel circRNA, circARPP21 (hsa_circ_0123629), exerts a strong effect on HCC progression. Reduced expression of circARPP21 in HCC patients is correlated with larger tumor size, higher tug-lymph node metastasis (TNM) stage, and poor prognosis as indicated by elevated levels of alpha-fetoprotein (AFP). Conversely, higher expression of circARPP21 can increase leukemia inhibitory factor receptor (LIFR) expression by sponging miR-543. Finally, overexpression of miR-543 can reverse the anti-proliferation and anti-metastasis effects of circARPP21. CONCLUSION The circARPP21/miR-543/LIFR axis suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells. In addition, circARPP21 can serve as a biomarker in HCC, thus offering a potential new approach to HCC therapy.
Collapse
Affiliation(s)
- Yichao Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
39
|
Coppola A, Ilisso CP, Stellavato A, Schiraldi C, Caraglia M, Mosca L, Cacciapuoti G, Porcelli M. S-Adenosylmethionine Inhibits Cell Growth and Migration of Triple Negative Breast Cancer Cells through Upregulating MiRNA-34c and MiRNA-449a. Int J Mol Sci 2020; 22:ijms22010286. [PMID: 33396625 PMCID: PMC7795242 DOI: 10.3390/ijms22010286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of β-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.
Collapse
Affiliation(s)
- Alessandra Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Antonietta Stellavato
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| |
Collapse
|
40
|
Li B, Wang Z, Yang F, Huang J, Hu X, Deng S, Tian M, Si X. miR‑449a‑5p suppresses CDK6 expression to inhibit cardiomyocyte proliferation. Mol Med Rep 2020; 23:14. [PMID: 33179102 PMCID: PMC7673318 DOI: 10.3892/mmr.2020.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Induction of cardiomyocyte (CM) proliferation is a promising approach for cardiac regeneration following myocardial injury. MicroRNAs (miRs) have been reported to regulate CM proliferation. In particular, miR‑449a‑5p has been identified to be associated with CM proliferation in previous high throughput functional screening data. However, whether miR‑449a‑5p regulates CM proliferation has not been thoroughly investigated. This study aimed to explore whether miR‑449a‑5p modulates CM proliferation and to identify the molecular mechanism via which miR‑449a‑5p regulates CM proliferation. The current study demonstrated that miR‑449a‑5p expression levels were significantly increased during heart development. Furthermore, the results suggested that miR‑449a‑5p mimic inhibited CM proliferation <em>in vitro</em> as determined via immunofluorescence for ki67 and histone H3 phosphorylated at serine 10 (pH3), as well as the numbers of CMs. However, miR‑449a‑5p knockdown promoted CM proliferation. CDK6 was identified as a direct target gene of miR‑449a‑5p, and CDK6 mRNA and protein expression was suppressed by miR‑449a‑5p. Moreover, CDK6 gain‑of‑function increased CM proliferation. Overexpression of CDK6 also blocked the inhibitory effect of miR‑449a‑5p on CM proliferation, indicating that CDK6 was a functional target of miR‑449a‑5p in CM proliferation. In conclusion, miR‑449a‑5p inhibited CM proliferation by targeting CDK6, which provides a potential molecular target for preventing myocardial injury.
Collapse
Affiliation(s)
- Bing Li
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhi Wang
- Department of Emergency Medicine, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xingwei Hu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoyun Si
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
41
|
Han X, Luan T, Sun Y, Yan W, Wang D, Zeng X. MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6. Mol Cells 2020; 43:793-803. [PMID: 32863280 PMCID: PMC7528684 DOI: 10.14348/molcells.2020.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenyi Yan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
42
|
Identification of the Key microRNAs and miRNA-mRNA Interaction Networks during the Ovarian Development of Hens. Animals (Basel) 2020; 10:ani10091680. [PMID: 32957620 PMCID: PMC7552605 DOI: 10.3390/ani10091680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
It is well-known that multiple functional miRNAs are found in mammals' ovaries, which are linked not only to ovarian development, but also to maturation and apoptosis. However, there is still a lack of knowledge regarding the role of miRNAs in the hen ovary. In the present study, we analyzed the miRNA sequencing libraries of ovaries at the four different developmental stages of hens (15, 20, 30, and 68 W) and a total of 677 known miRNAs and 61 novel miRNAs were identified. In total, 209 of them were differently expressed miRNAs (DE miRNAs) obtained from comparisons of the four stages, including 84 upregulated and 125 downregulated DE miRNAs. Furthermore, the five key DE miRNAs gga-miR-2954, gga-miR-6634-5p, gga-miR-449b-5p, gga-miR-449c-3p, and gga-miR449c-5p were screened using an analysis of the miRNA-mRNA interaction network and functional enrichment annotated in seven significantly enriched pathways, such as endocytosis, lysine degradation, the biosynthesis of amino acids, and the MAPK signaling pathway, which may primarily participate in cell differentiation and proliferation, steroid hormone biosynthesis, and angiogenesis by targeting the related genes. For instance, gga-miR-449 family members were predicted to target 15 genes, including TGFB1, TPM1, TPM3, and CAMKB2, which were reported to regulate follicular growth, selection, and the ovulatory cycle. Taken together, our results illustrate the ovarian miRNA profiles of the four classic developmental stages of hens and highlight the significant role of miRNAs in ovarian development and functions. However, in-depth research needs to be carried out to validate the potential functional miRNAs found in this study.
Collapse
|
43
|
Han TS, Hur K, Cho HS, Ban HS. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12092622. [PMID: 32937886 PMCID: PMC7565033 DOI: 10.3390/cancers12092622] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-coding RNAs such as microRNAs, long non-coding RNAs, and circular RNAs contribute to the development and progression of hepatocellular carcinoma through epigenetic association. Long non-coding RNAs and circular RNAs act as competing endogenous RNAs that contain binding sites for miRNAs and thus compete with the miRNAs, which results in promotion of miRNA target gene expression, thereby leading to proliferation and metastasis of hepatocellular carcinoma. Competing endogenous RNAs have the potential to become diagnostic biomarkers and therapeutic targets for treatment of hepatocellular carcinoma. Abstract The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA) regulation model described lncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries, which are specific ceRNA regulatory networks (lncRNA/circRNA-miRNA-mRNA) in HCC and discuss their clinical significance.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| |
Collapse
|
44
|
Zheng RP, Ma DK, Li Z, Zhang HF. MiR-145 Regulates the Chemoresistance of Hepatic Carcinoma Cells Against 5-Fluorouracil by Targeting Toll-Like Receptor 4. Cancer Manag Res 2020; 12:6165-6175. [PMID: 32801865 PMCID: PMC7398893 DOI: 10.2147/cmar.s257598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is a common drug for hepatic carcinoma (HCC), but the drug resistance of clinical chemotherapy restricts its use. Studies have demonstrated that miRNA molecules can act as a chemoresistance regulator in drug resistance of tumors, whereas the role of miR-145 in the 5-FU-resistant HCC remains unclear. OBJECTIVE To explore the prognostic value of miR-145 in HCC and its molecular mechanism in 5-FU-resistant HCC cells. METHODS A qRT-PCR assay was conducted to quantify miR-145 in HCC tissues and 5-FU-resistant HCC cells. The Cell Counting Kit-8 (CCK-8) and flow cytometry were adopted to analyze the proliferation and apoptosis of 5-FU-resistant HCC cells. The Western blot was adopted to quantify toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and apoptosis-related proteins. Moreover, an in vivo tumor xenotransplantation of nude mice was conducted to determine the effect of miR-145 on 5-FU-resistant HCC cells. RESULTS MiR-145 was expressed lowly in HCC tissues and cells, and linked to high TNM staging and lymph node metastasis of HCC patients. Down-regulation of miR-145 indicated a poorer prognosis and it promoted drug resistance of HCC cells and inhibited cell apoptosis. In contrast, miR-145 overexpression improved the sensitivity of HCC cells to 5-FU and enhanced the inhibition of 5-FU on tumor growth. The luciferase reporter gene assay showed that TLR4 was the direct target of miR-145, and the Western blot assay revealed that overexpression of TLR4 reversed the inhibitory effect of miR-145 overexpression on TLR4 and MyD88 protein and the effects of it on apoptosis-related proteins. CONCLUSION MiR-145 is an inhibiting factor in HCC and can target TLR4 to mediate the chemoresistance of HCC, which may provide novel ideas for treating HCC.
Collapse
Affiliation(s)
- Rui-Peng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| | - Dong-Kai Ma
- Department of Gastroenterology and Hepatology, Qian Wei Hospital of Jilin Province, Changchun, Jilin Province130012, People’s Republic of China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| | - Hai-Feng Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| |
Collapse
|
45
|
Cao NJ, Liu HN, Dong F, Wang W, Sun W, Wang G. Integrative analysis of competitive endogenous RNA network reveals the regulatory role of non-coding RNAs in high-glucose-induced human retinal endothelial cells. PeerJ 2020; 8:e9452. [PMID: 32655995 PMCID: PMC7331629 DOI: 10.7717/peerj.9452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Increasing evidence has suggested that non-coding RNAs (ncRNAs) play critical roles in the pathogenesis of diabetic retinopathy (DR), but their underlying mechanisms remain unclear. The purpose of this study was to determine latent key genes and to structure a competing endogenous RNA (ceRNA) regulatory network to discover the potential molecular mechanisms governing the effects of high glucose on human retinal endothelial cells (HRECs). Methods We obtained microarray data for long non-coding RNA (lncRNA) and mRNA of high-glucose-induced HREC samples from NCBI GEO datasets. The ceRNA network was screened using intersecting prediction results from miRcode, TargetScan, miRTarBase and miRDB. The protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes and hub genes were obtained using the cytoHubba app. The ClusterProfiler package was applied for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression of key RNAs was verified using the qRT-PCR method. A key ceRNA subnetwork was constructed based on the criticality of the genes and its binding sites were verified by luciferase reporter assay. The viability and apoptosis of HRECs were tested using the transfection of the miR-449c inhibitor. Results A total of 3,328 lncRNAs and 2,017 mRNAs were screened for differentially expressed (DE) profiles. The newly constructed ceRNA network was composed of 410 lncRNAs, 35 miRNAs and 122 mRNAs. The 10 hub genes were identified through the PPI network. GO and KEGG analysis revealed that DE mRNAs were mainly related to the positive regulation of the mRNA catabolic process, cell polarity, and the G1/S transition of mitotic and cell cycle signaling pathways. QRT-PCR was used to verify RNAs and the most important genes were screened out. A key ceRNA subnetwork OIP5-AS1/miR-449c/MYC was established. The binding site was verified by luciferase reporter assay. The expression levels of OIP5-AS1 and MYC increased after miR-449c inhibitor transfection, miR-449c decreased, HRECs activity increased, and apoptosis decreased, compared with the control group. Conclusion We successfully built the key ceRNA subnetwork, OIP5-AS1/miR-449c/MYC, by applying the GEO database for data analysis and mining. The results from the ceRNA network allow us to better understand the effect of ncRNAs on HRECs under hyperglycemic conditions and the pathogenesis of DR.
Collapse
Affiliation(s)
- Nan-Jue Cao
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, Peoples R China
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, Peoples R China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, Peoples R China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, Peoples R China
| | - Wei Sun
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, Peoples R China
| | - Gang Wang
- Department of Rheumatology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, Peoples R China
| |
Collapse
|
46
|
Zhang L, Lv L, Zheng N, Li R, Yang R, Li T, Li Y, Liu Y, Luo H, Li X, Zhou Y, Shan H, Bai B, Liang H. Suppression of Sox4 protects against myocardial ischemic injury by reduction of cardiac apoptosis in mice. J Cell Physiol 2020; 236:1094-1104. [PMID: 32657438 DOI: 10.1002/jcp.29918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Sox4 participates in the progression of embryo development and regulation of apoptosis in tumors. However, the effect and mechanism of Sox4 in myocardial infarction (MI) remains unclear. Therefore, we aimed at examining the role and molecular mechanism of Sox4 in the process of cardiomyocytes apoptosis during MI. The expression of Sox4 were obviously increased both in MI mice and in neonatal mouse cardiomyocytes treated with H2 O2 . Overexpression of Sox4 promoted cardiomyocyte apoptosis with or without H2 O2 , whereas knocking down of Sox4 alleviated H2 O2 -induced apoptosis in cardiomyocytes. Furthermore, silencing Sox4 by AAV-9 carried short hairpin RNA targeting Sox4 (AAV-9-sh-Sox4) markedly decreased cardiac infarct area, imprfoved cardiac dysfunction, and reversed apoptosis in MI mice. Mechanistically, there is a potential Sox4-binding site in the promoter region of Bim, and forced expression of Sox4 significantly promoted Bim expression in cultured cardiomyocytes with or without H2 O2 , whereas knocking down of Sox4 inhibited the expression of Bim. Further studies showed that silencing Bim attenuated Sox4-induced apoptosis in cardiomyocytes, indicating that Sox4 promoted cardiomyocytes apoptosis through regulation of Bim expression, which can be used as a potential therapeutic target for MI.
Collapse
Affiliation(s)
- Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Basic Medicine, The Centre of Functional Experiment Teaching, Harbin Medical University, Harbin, Heilongjiang, China
| | - Nan Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongwei Luo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bing Bai
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Ouhara K, Yoshioka M, Ishida S, Kawaguchi H, Kurihara H. Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts. J Bone Miner Metab 2020; 38:442-455. [PMID: 31970478 DOI: 10.1007/s00774-019-01080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various types of cells and can thus be used for periodontal regenerative therapy. However, the mechanism of differentiation is still unclear. Transplanted MSCs are, via their transcription factors or microRNAs (miRNAs), affected by periodontal cells with direct contact or secretion of humoral factors. Therefore, transplanted MSCs are regulated by humoral factors from human gingival fibroblasts (HGF). Moreover, insulin-like growth factor (IGF)-1 is secreted from HGF and regulates periodontal regeneration. To clarify the regulatory mechanism for MSC differentiation by humoral factors from HGF, we identified key genes, specifically miRNAs, involved in this process, and determined their function in MSC differentiation. MATERIALS AND METHODS Mesenchymal stem cells were indirectly co-cultured with HGF in osteogenic or growth conditions and then evaluated for osteogenesis, undifferentiated MSC markers, and characteristic miRNAs. MSCs had their miRNA expression levels adjusted or were challenged with IGF-1 during osteogenesis, or both of which were performed, and then, MSCs were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS Mesenchymal stem cells co-cultured with HGF showed suppression of osteogenesis and characteristic expression of ETV1, an undifferentiated MSC marker, as well as miR-101-3p. Over-expression of miR-101-3p regulated osteogenesis and ETV1 expression as well as indirect co-culture with HGF. IGF-1 induced miR-101-3p and ETV1 expression. However, IGF-1 did not suppress osteogenesis. CONCLUSIONS Humoral factors from HGF suppressed osteogenesis in MSCs. The effect was regulated by miRNAs and undifferentiated MSC markers. miR-101-3p and ETV1 were the key factors and were regulated by IGF-1.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
48
|
Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer 2020; 11:1801-1816. [PMID: 32374522 PMCID: PMC7327697 DOI: 10.1111/1759-7714.13450] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the leading cause of cancer-related death in women worldwide. Pre- and postoperative radiotherapy play a pivotal role in BRCA treatment but its efficacy remains limited and plagued by the emergence of radiation resistance, which aggravates patient prognosis. The long noncoding RNA (lncRNA)-implicated mechanisms underlying radiation resistance are rarely reported. The aim of this study was to determine whether lncRNA HOX transcript antisense RNA (HOTAIR) modulated the radiosensitivity of breast cancer through HSPA1A. METHODS A Gammacell 40 Exactor was used for irradiation treatment. Bioinformatic tools and luciferase reporter assay were adopted to explore gene expression profile and demonstrate the interactions between lncRNA, miRNA and target mRNA 3'-untranslated region (3'-UTR). The expression levels of certain genes were determined by real-time PCR and western-blot analyses. in vitro and in vivo functional assays were conducted by cell viability and tumorigenicity assays. RESULTS The levels of oncogenic lncRNA HOTAIR were positively correlated with the malignancy of BRCA but reversely correlated with the radiosensitivity of breast cancer cells. Moreover, the expression levels of HOTAIR were positively associated with those of heat shock protein family A (Hsp70) member 1A (HSPA1A) in clinical BRCA tissues and HOTAIR upregulated HSPA1A at the mRNA and protein levels in irradiated BRCA cells. Mechanistically, miR-449b-5p restrained HSPA1A expression through targeting the 3'-UTR of HSPA1A mRNA, whereas HOTAIR acted as a competing sponge to sequester miR-449b-5p and thereby relieved the miR-449b-5p-mediated HSPA1A repression. Functionally, HOTAIR conferred decreased radiosensitivity on BRCA cells, while miR-449b-5p overexpression or HSPA1A knockdown abrogated the HOTAIR-enhanced BRCA growth under the irradiation exposure both in vitro and in vivo. CONCLUSIONS LncRNA HOTAIR facilitates the expression of HSPA1A by sequestering miR-449b-5p post-transcriptionally and thereby endows BRCA with radiation resistance. KEY POINTS Therapeutically, HOTAIR and HSPA1A may be employed as potential targets for BRCA radiotherapy. Our findings shed new light into the mechanism by which lncRNAs modulate the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
49
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
50
|
Ding H, Yu X, Hang C, Gao K, Lao X, Jia Y, Yan Z. Ailanthone: A novel potential drug for treating human cancer. Oncol Lett 2020; 20:1489-1503. [PMID: 32724391 PMCID: PMC7377054 DOI: 10.3892/ol.2020.11710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular disease. In 2015, >8.7 million people died worldwide due to cancer, and by 2030 this figure is expected to increase to ~13.1 million. Tumor chemotherapy drugs have specific toxicity and side effects, and patients can also develop secondary drug resistance. To prevent and treat cancer, scientists have developed novel drugs with improved antitumor effects and decreased toxicity. Ailanthone (AIL) is a quassinoid extract from the traditional Chinese medicine plant Ailanthus altissima, which is known to have anti-inflammatory and antimalarial effects. An increasing number of studies have focused on AIL due to its antitumor activity. AIL can inhibit cell proliferation and induce apoptosis by up- or downregulating cancer-associated molecules, which ultimately leads to cancer cell death. Antitumor effects of AIL have been observed in melanoma, acute myeloid leukemia, bladder, lung, breast, gastric and prostate cancer and vestibular neurilemmoma. To the best of our knowledge, the present study is the first review to describe the antitumor mechanisms of AIL.
Collapse
Affiliation(s)
- Haixiang Ding
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuchong Yu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Chen Hang
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaijun Gao
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xifeng Lao
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yangtao Jia
- Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhilong Yan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|