1
|
Dasari BVM, Line PD, Sapisochin G, Hibi T, Bhangui P, Halazun KJ, Shetty S, Shah T, Magyar CTJ, Donnelly C, Chatterjee D. Liver transplantation as a treatment for cancer: comprehensive review. BJS Open 2025; 9:zraf034. [PMID: 40380811 PMCID: PMC12084677 DOI: 10.1093/bjsopen/zraf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Liver transplantation for cancer indications has gained momentum in recent years. This review is intended to optimize the care setting of liver transplant candidates by highlighting current indications, technical aspects and barriers with available solutions to facilitate the guidance of available strategies for healthcare professionals in specialized centres. METHODS A review of the most recent relevant literature was conducted for all the cancer indications of liver transplantation including colorectal cancer liver metastases, hilar cholangiocarcinoma, intrahepatic cholangiocarcinoma, neuroendocrine tumours, hepatocellular carcinoma and hepatic epitheloid haemangioendothelioma. RESULTS Transplant benefit from the best available evidence, including SECA I, SECA II, TRANSMET studies for colorectal liver metastases, various preoperative protocols for cholangiocarcinoma patients, standard, extended selection criteria for hepatocellular carcinoma and neuroendocrine tumours, are discussed. Innovative approaches to deal with organ shortages, including machine-perfused deceased grafts, living donor liver transplantation and RAPID procedures, are also explored. CONCLUSION Cancer indications for liver transplantation are here to stay, and the selection criteria among all cancer groups are likely to evolve further with improved prognostication of tumour biology using adjuncts such as radiomics, cancer genomics, and circulating DNA and RNA status. International prospective registry-based studies could overcome the limitations of smaller patient cohorts and lack of level 1 evidence.
Collapse
Affiliation(s)
- Bobby V M Dasari
- Department of Liver Transplantation and HBP Surgery, Queen Elizabeth Hospital, Birmingham, UK
- Department of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Pal-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Gonzalo Sapisochin
- Department of Surgery, Multi-Organ Transplant Program, University Health Network, Toronto, Canada
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Prashant Bhangui
- Liver Transplantation and Hepatobiliary Surgery, Medanta Institute of Liver Transplantation and Regenerative Medicine, Medanta-The Medicity, Gurgaon (Delhi NCR), India
| | - Karim J Halazun
- Department of Liver Transplantation and Hepatobiliary Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Shishir Shetty
- Department of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Hepatology, Queen Elizabeth Hospital, Birmingham, UK
| | - Tahir Shah
- Department of Hepatology, Queen Elizabeth Hospital, Birmingham, UK
| | - Christian T J Magyar
- Department of Abdominal Transplant & HBP Surgical Oncology, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Conor Donnelly
- Department of Liver Transplantation and Hepatobiliary Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Dev Chatterjee
- BRC Clinical Fellow Liver Medicine, University Hospitals of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Jaber F, Abuelazm M, Soliman Y, Madi M, Abusuilik H, Mazen Amin A, Saeed A, Gowaily I, Abdelazeem B, Rana A, Qureshi K, Lee TH, Cholankeril G. Machine perfusion strategies in liver transplantation: A systematic review, pairwise, and network meta-analysis of randomized controlled trials. Liver Transpl 2025; 31:596-615. [PMID: 39868927 DOI: 10.1097/lvt.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/04/2024] [Indexed: 01/28/2025]
Abstract
Machine perfusion (MP), including hypothermic oxygenated machine perfusion (HOPE), dual HOPE, normothermic machine perfusion (NMP), NMP ischemia-free liver transplantation (NMP-ILT), and controlled oxygenated rewarming (COR), is increasingly being investigated to improve liver graft quality from extended criteria donors and donors after circulatory death and expand the donor pool. This network meta-analysis investigates the comparative efficacy and safety of various liver MP strategies versus traditional static cold storage (SCS). We searched PubMed, Scopus, Web of Science, and Cochrane Controlled Register of Trials for randomized controlled trials comparing liver transplantation outcomes between SCS and MP techniques. The primary outcome was the incidence of early allograft dysfunction. Secondary endpoints included 1-year graft survival, the incidence of graft failure/loss, post-reperfusion syndrome, biliary complications, the need for renal replacement therapy, graft-related patient mortality, and the length of intensive care unit and hospital stay. R-software was used to conduct a network meta-analysis using a frequentist framework (PROSPERO ID: CRD42024549254). We included 12 randomized controlled trials involving 1628 patients undergoing liver transplantation (801 in the liver MP groups and 832 in the SCS group). Compared to SCS, HOPE/dHOPE, but not other MP strategies, was associated with a significantly lower risk of early allograft dysfunction (RR: 0.53, 95% CI [0.37, 0.74], p =0.0002), improved 1-year graft survival rate (RR: 1.07, 95% CI [1.01, 1.14], p =0.02), decreased graft failure/loss (RR: 0.38, 95% CI [0.16, 0.90], p =0.03), and reduced the risk of biliary complications (RR: 0.52, 95% CI [0.43, 0.75], p < 0.0001). Compared to SCS, NMP (RR: 0.49, 95% CI [0.24, 0.96]) and NMP-ILT (RR: 0.15, 95% CI [0.04, 0.57]), both significantly reduced the risk of postperfusion syndrome. There is no difference between SCS and MP groups in the risk of renal replacement therapy, graft-related patient mortality, and intensive care unit and hospital stay length. Our meta-analysis showed that HOPE/dual-HOPE is a promising alternative to SCS for donor liver preservation. These new techniques can help expand the donor pool with similar or even better post-liver transplantation outcomes.
Collapse
Affiliation(s)
- Fouad Jaber
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mohamed Abuelazm
- Department of Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Youssef Soliman
- Department of Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Madi
- Division of Gastroenterology and Hepatology, Department of Medicine, University School of Medicine, Saint Louis, Missouri, USA
| | - Husam Abusuilik
- Department of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Abdallah Saeed
- Department of Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ibrahim Gowaily
- Department of Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, West Virginia, USA
| | - Abbas Rana
- Hepatology Program, Department of General Surgery, Division of Abdominal Transplantation, Michael E DeBakey Baylor College of Medicine, Houston, Texas, USA
| | - Kamran Qureshi
- Division of Gastroenterology and Hepatology, Department of Medicine, University School of Medicine, Saint Louis, Missouri, USA
| | - Tzu-Hao Lee
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Hepatology Program, Department of General Surgery, Division of Abdominal Transplantation, Michael E DeBakey Baylor College of Medicine, Houston, Texas, USA
| | - George Cholankeril
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Hepatology Program, Department of General Surgery, Division of Abdominal Transplantation, Michael E DeBakey Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Nakamura T, Longchamp A, Markmann JF. Innovations to Expand the Liver Donor Pool: Machine Perfusion and Xenotransplantation. Clin Liver Dis 2025; 29:337-346. [PMID: 40287275 DOI: 10.1016/j.cld.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The number of patients awaiting liver transplant exceeds the number of liver grafts available. However, emerging technologies offer hope. Machine perfusion enhances the preservation, graft quality, and utilization of marginal livers, thereby reducing unnecessary graft discards. Xenotransplantation provides an alternative organ source, augmenting the donor supply or serving as a bridge for critically ill patients. These innovations are described in this review, as the recent clinical applications of these technologies promise to alleviate organ scarcity, improve transplant outcomes, and save lives.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Division of Transplant Surgery, Department of Surgery, University of Arkansas for Medical Sciences, AR, USA
| | - Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Penn Transplant Institute, The University of Pennsylvania, 1 Convention Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Nguyen MC, Li X, Linares N, Jadlowiec C, Moss A, Reddy KS, Mathur AK. Ex-situ machine perfusion in clinical liver transplantation: Current practices and future directions. Liver Transpl 2025; 31:531-544. [PMID: 38967460 DOI: 10.1097/lvt.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Ex-situ machine perfusion of the liver has surmounted traditional limitations associated with static cold storage in the context of organ preservation. This innovative technology has changed the landscape of liver transplantation by mitigating ischemia perfusion injury, offering a platform for continuous assessment of organ quality, and providing an avenue for optimizing the use of traditionally marginal allografts. This review summarizes the contemporary clinical applications of machine perfusion devices and discusses potential future strategies for real-time viability assessment, therapeutic interventions, and modulation of organ function after recovery.
Collapse
Affiliation(s)
- Michelle C Nguyen
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Xingjie Li
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | | | - Caroline Jadlowiec
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Adyr Moss
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Kunam S Reddy
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Amit K Mathur
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| |
Collapse
|
5
|
Endo T, Trivedi JR, Moore S, Fu S, Samson R, Gallo M, Pahwa S, Slaughter MS, Schumer EM. Outcomes of Multiorgan Heart Transplant Between Donation After Circulatory Death and Brain Death. ASAIO J 2025; 71:316-324. [PMID: 39401452 DOI: 10.1097/mat.0000000000002329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
There is insufficient data on the outcomes of donation after circulatory death (DCD) multiorgan transplant that includes heart. The primary objective of this study is to compare the overall survival outcomes of DCD and donation after brain death (DBD) multiorgan transplants. We identified all heart transplant patients from 2019 to June of 2023 using the United Network for Organ Sharing (UNOS) Database who also received an additional organ (kidney, liver, and lungs). A total of 1,844 DBD and 91 DCD multiorgan transplants occurred within the study period, the majority being combined heart-kidney transplantation. More patients were listed at a higher status in the DBD group ( p < 0.05) and were in the intensive care unit (ICU) before transplant ( p < 0.05). Despite the higher ischemia time in the DCD group ( p < 0.05), the overall unmatched survival did not differ between the two groups ( p < 0.05). Within the heart-kidney transplants, the overall survival between DBD and DCD heart-kidney transplants did not differ in either unmatched or matched groups (unmatched p = 0.5, matched p = 0.5). In conclusion, the data on the outcomes of DCD multiorgan transplants are limited. Still, our analysis of the currently available data suggests that the overall survival is comparable in the DCD multiorgan transplants.
Collapse
Affiliation(s)
- Toyokazu Endo
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Jaimin R Trivedi
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Stephanie Moore
- Department of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky
| | - Sheng Fu
- Department of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky
| | - Rohan Samson
- Department of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky
| | - Michele Gallo
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Siddharth Pahwa
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Mark S Slaughter
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Erin M Schumer
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
6
|
Fan L, Xia H, Peng G, Wang W, Fu Z, Ye Q. A Novel Machine Perfusion System for Enhancing Hepatic Microcirculation Perfusion. Artif Organs 2025; 49:582-591. [PMID: 39740084 DOI: 10.1111/aor.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Machine perfusion is a promising strategy for safeguarding liver transplants donated after cardiac death (DCD). In this study, we developed and validated a novel machine perfusion approach for mitigating risk factors and salvaging severe DCD livers. METHODS A novel hypothermic oxygenated perfusion (HOPE) system was developed, incorporating two pumps and an elastic water sac to emulate the functionality of the cardiac cycle. Compared to conventional systems (HOPE S1 and S2), the novel HOPE system (HOPE S3) was evaluated in rats, utilizing healthy livers perfused with methylene blue diluted using Histidine-tryptophan-ketoglutarate (HTK) solution or DCD livers subjected to 60 min of warm ischemia without heparin administration. Liver perfusion outcomes were assessed through macroscopic and microscopic evaluations, molecular analyses, and orthotopic liver transplantation (OLT). RESULTS DCD livers subjected to HOPE systems' perfusion exhibited decreased injury and enhanced survival rates compared to static cold storage following 60 min of warm ischemia (DCD + SCS). The 4-week post-transplantation survival rates were 0%, 20%, and 33% in the DCD + SCS, HOPE S1, and HOPE S2 groups, respectively. HOPE S3 conferred protection against hepatocyte and non-parenchymal cell injury, resulting in a 67% animal survival rate following 60 min of warm donor ischemia (HOPE S3). Assessments of hepatic sinusoidal microcirculation, morphological changes, and molecular alterations in preserved livers further confirmed these findings. CONCLUSIONS The newly devised machine perfusion system can enhance and uniform liver perfusion and may become a promising tool for revitalizing DCD liver grafts afflicted with severe warm ischemic injuries.
Collapse
Affiliation(s)
- Lin Fan
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoyang Xia
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guizhu Peng
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiyu Wang
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Fu
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qifa Ye
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- National Health Commission Key Laboratory of Translational Research on Transplantation Medicine, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Williams LJL, Hogg R, Roque MAR, Beale S, Husain M, Jothidasan A, Zych B, Gerovasili V, Kaul P, Tsui S, Smail H, Adhami AA, Parmar J, Pettit S, Periasamy SA, Mohite P, Curry P, Messer S, Morcos K, Venkateswaran R, Mehta V, Dronavalli V, Ramesh BC, Ranasinghe A, Quinn D, Raj B, Sutcliffe R, Suresh D, Johnston C, Pettigrew G, Butler A, Olland A, Hardman G, Watson C, Manas D, Currie I, Berman M. The United Kingdom's experience of controlled donation after circulatory death direct procurement of lungs with concomitant abdominal normothermic regional perfusion with an analysis of short-term outcomes. J Heart Lung Transplant 2025:S1053-2498(25)01857-1. [PMID: 40180231 DOI: 10.1016/j.healun.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Abdominal Normothermic Regional Perfusion (A-NRP) improves outcomes for transplanted abdominal organs from Donation after Circulatory Death (DCD) donors. Concerns have been raised about the effect of A-NRP on lungs procured during multi-organ donation. We present the UK experience of performing direct procurement (DRP) of lungs from DCD donors with A-NRP. METHODS Retrospective analysis of all 487 UK DCD lung donors between April 1, 2011 and December 31, 2023. Organ transplantation rate and 30-day, 90-day and 1-year survival rates were compared between DRP of DCD lungs, DRP of DCD lungs with A-NRP and donation after brainstem death (DBD) lungs. Primary graft dysfunction (PGD) rates were compared between DCD lungs with and without A-NRP. RESULTS Three hundred ninety-seven DCD donors resulted in a lung transplant (22 retrieved by DRP with A-NRP). There was no difference in lung transplantation rates between DRP and DRP with A-NRP. Of the 390 first adult-only lung transplants performed from DCD donors, there was no significant difference in 30-day, 90-day and 1-year survival between DRP of DCD lungs and DRP with A-NRP. There was a significant difference in survival between standard DCD donors and DBD donors at 30-days and 90-days, but not 1 year. There was no significant difference in grade 3 PGD rates at 72 hours post-implantation for DCD lungs with or without A-NRP. CONCLUSION In the UK experience, use of A-NRP is not detrimental to procurement of DCD lungs. We advocate the use of this technique until further studies can explore the safety and efficacy of thoraco-abdominal NRP for lungs in multi-organ retrieval.
Collapse
Affiliation(s)
- Luke John Lloyd Williams
- Statistics and Clinical Research, NHS Blood and Transplant, Bristol, United Kingdom; Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Rachel Hogg
- Statistics and Clinical Research, NHS Blood and Transplant, Bristol, United Kingdom
| | | | - Sarah Beale
- Statistics and Clinical Research, NHS Blood and Transplant, Bristol, United Kingdom
| | - Mubassher Husain
- Department of Transplantation, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anand Jothidasan
- Department of Transplantation, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Bart Zych
- Department of Transplantation, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Vicky Gerovasili
- Department of Transplantation, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Pradeep Kaul
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Steven Tsui
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Hassiba Smail
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Ahmed Al Adhami
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jasvir Parmar
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom; Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom
| | - Stephen Pettit
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Sri Aurovind Periasamy
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Prashant Mohite
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Philip Curry
- Department of Cardiothoracic Transplantation, Golden Jubilee University National Hospital, Glasgow, United Kingdom
| | - Simon Messer
- Department of Cardiothoracic Transplantation, Golden Jubilee University National Hospital, Glasgow, United Kingdom
| | - Karim Morcos
- Department of Cardiothoracic Transplantation, Golden Jubilee University National Hospital, Glasgow, United Kingdom
| | - Rajamiyer Venkateswaran
- Department of Cardiothoracic Transplantation, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Vipin Mehta
- Department of Cardiothoracic Transplantation, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Vamsidhar Dronavalli
- Department of Cardiothoracic Transplantation, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - B C Ramesh
- Department of Cardiothoracic Transplantation, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Aaron Ranasinghe
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom; Department of Cardiothoracic Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - David Quinn
- Department of Cardiothoracic Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Binu Raj
- Department of Transplantation, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ruth Sutcliffe
- Department of Cardiothoracic Transplantation, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Dharmic Suresh
- Department of Cardiothoracic Transplantation, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Chris Johnston
- Department of Transplantation, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Gavin Pettigrew
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom; Roy Calne Transplant Unit and the University of Cambridge Department of Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andrew Butler
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom; Roy Calne Transplant Unit and the University of Cambridge Department of Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anne Olland
- Department of Transplantation, University Hospital Strasbourg, Strasbourg, France
| | - Gillian Hardman
- Department of Cardiothoracic Transplantation, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Christopher Watson
- Roy Calne Transplant Unit and the University of Cambridge Department of Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Derek Manas
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom
| | - Ian Currie
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom; Department of Transplantation, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Marius Berman
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom; Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom.
| |
Collapse
|
8
|
Avolio AW, Spoletini G, Cillo U, Croome K, Oniscu G, Burra P, De Santibanes M, Egawa H, Gastaca M, Guo Z, Lai Q, Martins PN, Polak WG, Quintini C, Rela M, Sapisochin G, Wiederkehr J, Pravisani R, Balci D, Leipnitz I, Boin I, Braun F, Caccamo L, Camagni S, Carraro A, Cescon M, Chen Z, Ciccarelli O, De Carlis L, Feiwen D, Di Benedetto F, Ekser B, Ettorre GM, Garcia-Guix M, Ghinolfi D, Grat M, Gruttadauria S, Hammond J, Hu Z, Junrungsee S, Lesurtel M, Mabrut JY, Maluf D, Mazzaferro V, Mejia G, Monakhov A, Noonthasoot B, Nadalin S, Nguyen BM, Nghia NQ, Patel M, Perera T, Perini MV, Pulitano C, Romagnoli R, Salame E, Subhash G, Sudhindran S, Ito T, Tandoi F, Testa G, Taner T, Tisone G, Vennarecci G, Vivarelli M, Giannarelli D, Pasciuto T, Pascale MM, Agopian V, and the global IMPROVEMENT study group. Protocol for an international multicenter, prospective, observational, non-competitive, study to validate and optimise prediction models of 90-day and 1-year allograft failure after liver transplantation: The global IMPROVEMENT Study. Updates Surg 2025:10.1007/s13304-025-02078-4. [PMID: 40146444 DOI: 10.1007/s13304-025-02078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 03/28/2025]
Abstract
More liver transplants (LT) are performed worldwide thanks to extended criteria donors (ECD). This is paralleled by a supposed increased risk of allograft failure (AF) at 90 and 365 days. This study has been designed to portray the LT practice worldwide and investigate models of AF prediction and the impact of risk mitigation strategies for further improving graft and patient outcomes. This is a multicenter, international, non-competitive, observational two segment study on consecutive LTs over two periods (2017-2019 and 2022-2024). A steering committee of LT experts defined the study protocol. The prospective segment will enroll 750 patients from 15 high-volume LT centers (50 per center), and the retrospective segment will enrol 4200 patients from 56 LT centers (75 per center). To provide a snapshot of the LT activity globally and to develop new algorithms for the timely prediction of AF at 90 and 365 days post-LT. The study also aims (1) to validate the existing predictive models and (2) to investigate the best time for re-transplantation, paying attention to the differences in AF and Ischemic cholangiopathy according to the donor types and mitigation strategies implemented in the various settings. Since the adoption of machine perfusion has increased in different proportions worldwide, models will be adjusted according to this parameter. Finally, retrospective and prospective data will be available for further stratifications and modelling according to the degree of decompensation at transplant, gender match, postoperative complications and their management. This protocol was approved by Fondazione Policlinico Universitario Agostino Gemelli IRCCS Ethics Committee (study ID: 4571) and the Institutional Review Board of the University of California, Los Angeles. The provisional study protocol was submitted to the main scientific international societies in the transplant field. Results will be published in international peer-reviewed journals and presented at congresses.
Collapse
Affiliation(s)
- Alfonso W Avolio
- General Surgery and Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Gabriele Spoletini
- General Surgery and Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Umberto Cillo
- General Surgey 2 Hepatobiliopancreatic Surgery and Liver Transplan Unit, Azienda Ospedaliera Universitaria, Padua, Italy
| | - Kristopher Croome
- Division of Transplant Surgery, Department of Transplant, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriel Oniscu
- Division of Transplantation, Clintec Karolinska University Hospital, Stockholm, Sweden
| | - Patrizia Burra
- Multivisceral Transplant Unit, Azienda Ospedaliera Universitaria, Padua, Italy
| | - Martin De Santibanes
- Department of Hepato-Biliary, Pancreatic Surgery & Liver Transplant Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shizuoka, Japan
| | - Mikel Gastaca
- Unidad de Cirugía Hepatobiliar y Trasplante Hepático, Hospital Universitario Cruces-Bilbao, Bilbao, Spain
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Quirino Lai
- Hepato-Bilio-Pancreatic and Liver Transplant Unit, Department of Surgery, Sapienza University, Rome, Italy
| | - Paulo N Martins
- Transplant Division, Dept of Surgery, University of Massachusetts, Worcester, MA, USA
| | - Wojciech G Polak
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, University MC Rotterdam, Rotterdam, the Netherlands
| | - Cristiano Quintini
- Department of Liver Transplantation, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical center, Bharath Institute of Higher Education and Research, Chennai, India
| | | | - Julio Wiederkehr
- Liver Transplant Division, Hospital Santa Isabel, Blumenau, Brazil
| | | | - Deniz Balci
- Liver Transplantation Unit, Department of General Surgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ian Leipnitz
- Liver Transplant Unit, University of Auckland, Auckland, New Zealand
| | - Ilka Boin
- Liver Transplantation Unit, University of Campinas-UNICAMP, S. Paolo, Brazil
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplant- and Pediatric-Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lucio Caccamo
- General and Liver Transplant Surgery, Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Amedeo Carraro
- Liver Transplant Unit, University Hospital Trust of Verona, Verona, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy
| | - Zhishui Chen
- Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Wuhan, China
| | - Olga Ciccarelli
- Service de Chirurgie et Transplantation Abdominal, Cliniques Universtaires Saint-Luc, Louvein, Belgium
| | - Luciano De Carlis
- General Surgery and Abdominal Transplantation Unit, University of Milano-Bicocca and Niguarda-CàGranda Hospital, Milan, Italy
| | - Deng Feiwen
- Department of Hepatopancreas Surgery, Foshan First People's Hospital, Foshan, China
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Giuseppe Maria Ettorre
- Department of General Surgery and Transplantation Unit, A.O. San Camillo-Forlanini, Rome, Italy
| | - Marta Garcia-Guix
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, University of Barcelona, Barcelona, Spain
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Michal Grat
- Transplant and Liver Surgery, Public Central Teaching Hospital, Medical University of Warsaw, Warsaw, Poland
| | | | - John Hammond
- HPB and Transplant Surgery, Newcastle Hospital NHS Foundation Trust, Newcastle, UK
| | - Zemin Hu
- General Surgery 1, Zhongshan People's Hospital, Zhongshan, China
| | - Sunhawit Junrungsee
- Division of Hepato-Biliary-Pancreas Surgery, Chiang Mai University, Chiang Mai, Thailand
| | - Michael Lesurtel
- Department of HPB Surgery & Liver Transplantation, Beaujon Hospital, Université Paris Cité, Paris, France
| | - Jean Yves Mabrut
- Department of General Surgery and Liver Transplantation, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Daniel Maluf
- Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, University of Milan and National Cancer Institute, IRCCS, Milan, Italy
| | - Gilberto Mejia
- Transplant Surgery, Fundacion CardioInfantil, Bogotà, Colombia
| | - Artem Monakhov
- Surgical Department #2 (Liver Transplantation), National Medical Research Center of Transplantation and Artificial Organs named after V.I. Shumakov, Moscow, Russia
| | - Bunthoon Noonthasoot
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, Universitätsklinik Tübingen, Tubingen, Germany
| | - Brian M Nguyen
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown, Washington, DC, USA
| | - Nguyen Quang Nghia
- Center of Organ Transplantation, Viet Duc University Hospital, Hanoi, Vietnam
| | - Madhukar Patel
- Liver Transplantation Unit, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thamara Perera
- Transplant Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Center, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ephrem Salame
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Regional University Hospital, Tours, France
| | - Gupta Subhash
- center for Liver and Biliary Science, Max Super Speciality Hospital Saket, New Delhi, India
| | - Surendran Sudhindran
- Dept of GI Surgery, Amrita Institute of Medical Sciences (Amrita Hospital), Kochi, India
| | - Takashi Ito
- Dept of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Francesco Tandoi
- Hepatobiliary Surgery and Liver Transplantation, AOU Policlinico Consorziale di Bari, Bari, Italy
| | - Giuliano Testa
- Baylor Scott & White, All Saints Medical Center & Baylor University Medical Center, Ft. Worth & Dallas, TX, USA
| | - Timucin Taner
- Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Tisone
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Vennarecci
- UOC Hepato-Biliary Surgery and Liver Transplant center, A.O.R.N.A. CARDARELLI, Naples, Italy
| | - Marco Vivarelli
- Hepatobiliary and Abdominal Transplantation Surgery, Ancona Hospital, Ancona, Italy
| | - Diana Giannarelli
- Dept Epidemiology and Biostatistics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Tina Pasciuto
- Hygiene Unit, University Department of Life Sciences and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Research Core Facility Data Collection G-STeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Maria Pascale
- General Surgery and Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vatche Agopian
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Moeckli B, Wassmer CH, El Hajji S, Kumar R, Rodrigues Ribeiro J, Tabrizian P, Feng H, Schnickel G, Kulkarni AV, Allaire M, Asthana S, Karvellas CJ, Meeberg G, Wei L, Chouik Y, Kumar P, Gartrell RD, Martinez M, Kang E, Sogbe M, Sangro B, Schwacha-Eipper B, Schmiderer A, Krendl FJ, Goossens N, Lacotte S, Compagnon P, Toso C. Determining safe washout period for immune checkpoint inhibitors prior to liver transplantation: An international retrospective cohort study. Hepatology 2025:01515467-990000000-01187. [PMID: 40042053 DOI: 10.1097/hep.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS Immune checkpoint inhibitors (ICIs) are increasingly used in patients with advanced HCC patients awaiting liver transplantation (LT). However, concerns about the risk of posttransplant rejection persist. APPROACH AND RESULTS We conducted an international retrospective cohort study including 119 HCC patients who received ICIs prior to LT. We analyzed the incidence of allograft rejection, graft loss, and posttransplant recurrence with a particular focus on the washout period between the last ICI dose and LT. In this study, 24 of the 119 (20.2%) patients experienced allograft rejection with a median time to rejection of 9 days (IQR 6-10) post-LT. A linear relationship was observed between shorter washout periods and higher rejection risk. Washout periods <30 days (OR: 21.3, 95% CI: 5.93-103, p< 0.001) and between 30 and 50 days (OR: 9.48, 95% CI 2.47-46.8, p =0.002) were significantly associated with higher rejection rates in the univariate analysis compared to the washout period above 50 days. Graft loss as a result of rejection occurred in 6 patients (25%) with rejection. No factors related to grafts were associated with rejection. A longer washout period was not associated with a lower recurrence-free survival posttransplantation at 36 months (71% vs. 67%, p =0.71). CONCLUSIONS Our findings suggest that a washout period longer than 50 days for ICIs before LT appears to be safe with respect to rejection risk. While these results may help guide clinical decision-making, future prospective studies are essential to establish definitive guidelines.
Collapse
Affiliation(s)
- Beat Moeckli
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Sofia El Hajji
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Rohan Kumar
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Parissa Tabrizian
- Recanati/Miller Institute, Mount Sinai Medical Center, New York, USA
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, Shanghai, China
| | - Gabriel Schnickel
- Division of Transplant and Hepatobiliary Surgery, Department of Surgery, University of California San Diego, San Diego, California, USA
| | | | - Manon Allaire
- AP-HP Sorbonne Université, Hôpital Universitaire Pitié-Salpêtrière, Service d'Hépato-gastroentérologie, Paris, France
| | - Sonal Asthana
- Department of Hepatobiliary Surgery and Transplantation, Aster Hospitals, Bangalore, India
| | - Constantine J Karvellas
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Glenda Meeberg
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Wuhan, China
| | - Yasmina Chouik
- Department of Hepatology, Croix-Rousse Hospital, Lyon, France
| | - Pramod Kumar
- Department of Hepatology, BGS Gleneagles Global Hospital, Bengaluru, India
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Elise Kang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Miguel Sogbe
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Bruno Sangro
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | | | - Andreas Schmiderer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Goossens
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Stephanie Lacotte
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Philippe Compagnon
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Christian Toso
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| |
Collapse
|
10
|
Vervoorn MT, Ballan EM, Kaffka Genaamd Dengler SE, Meijborg VMF, de Jager SCA, Van Wijk R, van der Kaaij NP. A perspective on the added value of red blood cells during cardiac hypothermic oxygenated perfusion. J Heart Lung Transplant 2025; 44:285-288. [PMID: 39369969 DOI: 10.1016/j.healun.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
Hypothermic oxygenated perfusion (HOPE) is an emerging technique for donor heart preservation that is currently being studied in multiple clinical trials with promising results. When compared to HOPE for other organs, cardiac protocols involve red blood cell (RBC) supplementation, despite absence of comparative evidence for its benefits. In this perspective paper, we discuss the pros and cons of the addition of RBCs during cardiac HOPE. Although the current clinical results with RBC supplementation during HOPE seem promising, potential downsides of RBC supplementation cannot be ruled out. The impact of supplemented RBCs during cardiac HOPE requires further investigation to improve HOPE protocols, to optimize heart preservation using this promising technology.
Collapse
Affiliation(s)
- Mats T Vervoorn
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisa M Ballan
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | | | - Veronique M F Meijborg
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia C A de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard Van Wijk
- Department Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Lan T, Yu M, Ming T, Wang H, Deng J, Cheng S, Shen Z, Kong D. A novel cytoprotective organ perfusion platform for reconstructing homeostasis of DCD liver while alleviating IRI injury. Bioeng Transl Med 2025; 10:e10724. [PMID: 39801755 PMCID: PMC11711209 DOI: 10.1002/btm2.10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pump is a vital component for expelling the perfusate in small animal isolated organ normothermic machine perfusion (NMP) systems whose flexible structure and rhythmic contraction play a crucial role in maintaining perfusion system homeostasis. However, the continuous extrusion forming with the rigid stationary shaft of the peristaltic pumps can damage cells, leading to metabolic disorders and eventual dysfunction of transplanted organs. Here, we developed a novel biomimetic blood-gas system (BBGs) for preventing cell damage. This system mimics the cardiac cycle and features an adjustable inspiratory-to-expiratory (IE) ratio to mitigate acidosis caused by continuous oxygen inhalation. In our study, adipose stem cells (ADSCs) were cultured within the circulatory system for 10 min, 2, and 4 h. Compared to the peristaltic pump, the BBGs significantly reduced cell apoptosis and morphological injury while enhancing cell proliferation and adhesion. Additionally, when the supernatant from ADSCs was introduced to LPS-induced macrophages for 24 h, the BBGs group demonstrated a more pronounced anti-inflammatory effect, characterized by reduced M1 macrophage expression. Besides, with isolated rat livers from donation after circulatory death (DCD) perfusion with ADSCs for 6 h by the BBGs, we detected fewer apoptotic cells and a reduced inflammatory response, evidenced by down-regulated TNF-α expression. The development of BBGs demonstrates the feasibility of recreating physiological liquid-gas circulation in vitro, offering an alternative platform for isolated organ perfusion, especially for applications involving cell therapy.
Collapse
Affiliation(s)
- Tingting Lan
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Mingxing Yu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| | - Tao Ming
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Shuhan Cheng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Deling Kong
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| |
Collapse
|
12
|
Garcia KB, Hussein A, Satish S, Wehrle CJ, Karakaya O, Panconesi R, Sun K, Jiao C, Fernandes E, Pinna A, Hashimoto K, Miller C, Aucejo F, Schlegel A. Machine Perfusion as a Strategy to Decrease Ischemia-Reperfusion Injury and Lower Cancer Recurrence Following Liver Transplantation. Cancers (Basel) 2024; 16:3959. [PMID: 39682147 DOI: 10.3390/cancers16233959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Liver transplantation (LT) is a key treatment for primary and secondary liver cancers, reducing tumor burden with concurrent improvement of liver function. While significant improvement in survival is noted with LT, cancer recurrence rates remain high. Mitochondrial dysfunction caused by ischemia-reperfusion injury (IRI) is known to drive tumor recurrence by creating a favorable microenvironment rich in pro-inflammatory and angiogenic factors. Therefore, strategies that decrease reperfusion injury and mitochondrial dysfunction may also decrease cancer recurrence following LT. Machine perfusion techniques are increasingly used in routine clinical practice of LT with improved post-transplant outcomes and increased use of marginal grafts. Normothermic (NMP) and hypothermic oxygenated machine perfusion (HOPE) provide oxygen to ischemic tissues, and impact IRI and potential cancer recurrence through different mechanisms. This article discussed the link between IRI-associated inflammation and tumor recurrence after LT. The current literature was screened for the role of machine perfusion as a strategy to mitigate the risk of cancer recurrence. Upfront NMP ("ischemia free organ transplantation") and end-ischemic HOPE were shown to reduce hepatocellular carcinoma recurrence in retrospective studies. Three prospective randomized controlled trials are ongoing in Europe to provide robust evidence on the impact of HOPE on cancer recurrence in LT.
Collapse
Affiliation(s)
- Karla Bracho Garcia
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Ahmed Hussein
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Sangeeta Satish
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chase J Wehrle
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Omer Karakaya
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca Panconesi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Fernandes
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Antonio Pinna
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Koji Hashimoto
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charles Miller
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrea Schlegel
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
Robinson T, Vargas PA, Yemini R, Goldaracena N, Pelletier S. Are we on track to increase organ utilization? An analysis of machine perfusion preservation for liver transplantation in the United States. Artif Organs 2024; 48:1275-1287. [PMID: 39034871 DOI: 10.1111/aor.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Efforts to improve the quality of marginal grafts for transplantation are essential. Machine perfusion preservation appears as a promising solution. METHODS The United Network for Organ Sharing (UNOS) database was queried for deceased liver donor records between 2016 and 2022. The primary outcome of interest was the organ nonutilization rate. Long-term graft and patient survival among extended criteria donors (ECDs) were also analyzed. RESULTS During the study period, out of 54 578 liver grafts recovered for transplant, 5085 (9.3%) were nonutilized. Multivariable analysis identified normothermic machine perfusion (NMP) preservation as the only predictor associated with a reduction in graft nonutilization (OR = 0.12; 95% CI = 0.06-0.023, p < 0.001). Further analysis of ECD grafts that were transplanted revealed comparable 1-,2- and 3-years graft survival (89%/88%/82% vs. 90%/85%/81%, p = 0.60), and patient survival (92%/91%/84% vs. 92%/88%/84%, p = 0.65) between grafts that underwent MP vs. those who did not, respectively. CONCLUSIONS Liver nonutilization rates in the United States are at an all-time high. Available data, most likely including cases from clinical trials, showed that NMP reduced the odds of organ nonutilization by 12% among the entire deceased donor pool and by 16% among grafts from ECD. Collective efforts and further evidence reflecting day-to-day clinical practice are needed to fully reach the potential of MP for liver transplant.
Collapse
Affiliation(s)
- Todd Robinson
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Paola A Vargas
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Renana Yemini
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Nicolas Goldaracena
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shawn Pelletier
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Yu J, Yunhua T, Guo Y, Dong Y, Gong JL, Wang T, Chen Z, Chen M, Ju W, He X. Beyond graft function impairment after liver transplantation: the prolonged cold ischemia time impact on recurrence of hepatocellular carcinoma after liver transplantation-a single-center retrospective study. PeerJ 2024; 12:e18126. [PMID: 39376229 PMCID: PMC11457873 DOI: 10.7717/peerj.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the malignant tumors responsible for high mortality and recurrence rates. Although liver transplantation (LT) is an effective treatment option for HCC, ischemia-reperfusion injury (IRI) is a contributor to HCC recurrence after LT. Moreover, prolonged cold ischemia time (CIT) is a risk factor for IRI during LT, and there is insufficient clinical evidence regarding the impact of CIT on HCC recurrence after LT. Patients and Methods This retrospective study analyzed 420 patients who underwent LT for HCC between February 2015 and November 2020 at The First Affiliated Hospital, Sun Yat-sen University. The duration of CIT was defined as the time from clamping of the donor aorta until portal reperfusion. Results A total of 133 patients (31.7%) experienced tumor recurrence after LT, and CIT > 568 min was the independent risk factor for HCC recurrence (OR, 2.406; 95% CI [1.371-4.220]; p = 0.002). Multivariate Cox's regression analysis revealed that the recipients' gender, exceeding Milan criteria, poor differentiation, and alpha-fetoprotein (AFP) ≥400 ng/ml in CIT > 568 min group were independent risk factors for disease-free survival. The peak 7-day postoperative alanine aminotransferase (ALT) level (p < 0.001), the peak 7-day postoperative aspartate aminotransferase (AST) level (p < 0.001), the peak 7-day postoperative peak total bilirubin (TBIL) level (p = 0.012), and the incidence of early allograft dysfunction (EAD) (p = 0.006) were significantly higher in the CIT > 568 min group compared to the CIT ≤ 568 min group. Moreover, the amount of fresh frozen plasma (FFP) infusion during the operation increased (p = 0.02), and the time of mechanical ventilation postoperative was longer (p = 0.045). Conclusion An effective strategy to improve the prognosis is to reduce CIT; this strategy lowers the recurrence of HCC in patients undergoing LT, especially those within the Milan criteria.
Collapse
Affiliation(s)
- Jia Yu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
- The First Affiliated Hospital of University of South China, Hengyang, China
| | - Tang Yunhua
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Yiwen Guo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | | | - Tielong Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
15
|
Parente A, Wehrle CJ, Schold JD, Panconesi R, Miller C, Hashimoto K, Dondossola D, Schlegel A. Reply to: "Trends in current use of machine perfusion for donation after cardiac death donors in the US". J Hepatol 2024; 81:e189-e191. [PMID: 38925271 DOI: 10.1016/j.jhep.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Alessandro Parente
- Institute of Liver Studies, King's College Hospital, Denmark Hill, SE59RS, London, United Kingdom
| | - Chase J Wehrle
- Transplantation Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jesse D Schold
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), USA; University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Transplant Surgery, USA
| | - Rebecca Panconesi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, 10124, Turin, Italy
| | - Charles Miller
- Transplantation Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, Cleveland, Ohio, USA; Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Risbey CWG, Thomas C, Niu A, Liu K, Crawford M, Pulitano C. Hypothermic Oxygenated machine PErfusion for high-risk liver grafts for transplantation: A systematic review and meta-analysis. Artif Organs 2024; 48:1085-1099. [PMID: 39418539 DOI: 10.1111/aor.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hypothermic Oxygenated machine PErfusion (HOPE) can reduce ischemic reperfusion injury and improve outcomes for liver transplant recipients. However, the effect of HOPE on high-risk extended criteria donor (ECD) and donation after circulatory death determination (DCDD) grafts is incomplete, despite the expectation that this cohort benefit maximally from HOPE. Accordingly, this paper aims to characterize the effect of HOPE on ECD and DCDD grafts. METHODS This study includes all papers comparing HOPE to static cold storage for high-risk ECD and DCDD grafts. Systematic searches of Medline, Embase, and Scopus were completed using the terms "HOPE" OR "hypothermic oxygenated machine perfusion" AND "liver transplantation". Data were extracted and analyzed using IBM SPSS to perform the meta-analysis. RESULTS A total of 2286 records were identified, with 10 meeting the inclusion criteria. Overall, the quality of evidence is heterogenous with many papers relying on retrospective controls. However, pooled analysis demonstrates HOPE to significantly reduce the rate of early allograft dysfunction, 12-month graft failure, re-transplantation, total biliary complications, and non-anastomotic strictures for high-risk grafts. CONCLUSIONS There is good evidence that HOPE improves outcomes following liver transplantation across a number of biochemical and clinical endpoints for high-risk grafts. Of note, the reduction in biliary complications and re-transplantation is particularly significant given the morbidity associated with these endpoints. However, further, high-quality prospective trials with contemporary controls and clinically relevant primary endpoints are needed to better define the impact of HOPE for this cohort of grafts.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Charles Thomas
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anita Niu
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ken Liu
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael Crawford
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Finotti M, Romano M, Grossi U, Dalla Bona E, Pelizzo P, Piccino M, Scopelliti M, Zanatta P, Zanus G. Innovations in Liver Preservation Techniques for Transplants from Donors after Circulatory Death: A Special Focus on Transplant Oncology. J Clin Med 2024; 13:5371. [PMID: 39336858 PMCID: PMC11432009 DOI: 10.3390/jcm13185371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Liver transplantation is the preferred treatment for end-stage liver disease. Emerging evidence suggests a potential role for liver transplantation in treating liver tumors such as colorectal liver metastases and cholangiocarcinoma. However, due to a limited donor pool, the use of marginal grafts from donation after circulatory death (DCD) donors is increasing to meet demand. Machine perfusion is crucial in this context for improving graft acceptance rates and reducing ischemia-reperfusion injury. Few studies have evaluated the role of machine perfusion in the context of transplant oncology. Perfusion machines can be utilized in situ (normothermic regional perfusion-NRP) or ex situ (hypothermic and normothermic machine perfusion), either in combination or as a complement to conventional in situ cold flush and static cold storage. The objective of this analysis is to provide an up-to-date overview of perfusion machines and their function in donation after circulatory death with particular attention to their current and likely potential effects on transplant oncology. A literature review comparing standard cold storage to machine perfusion methods showed that, so far, there is no evidence that these devices can reduce the tumor recurrence rate. However, some evidence suggests that these innovative perfusion techniques can improve graft function, reduce ischemia-reperfusion injury, and, based on this mechanism, may lead to future improvements in cancer recurrence.
Collapse
Affiliation(s)
- Michele Finotti
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
- Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Maurizio Romano
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Ugo Grossi
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Enrico Dalla Bona
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Patrizia Pelizzo
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Marco Piccino
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Michele Scopelliti
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Paolo Zanatta
- Department of Anesthesiology and Critical Care, Treviso Regional Hospital AULSS 2 Marca Trevigiana, 31100 Treviso, Italy
| | - Giacomo Zanus
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| |
Collapse
|
18
|
Canizares S, Montalvan A, Chumdermpadetsuk R, Modest A, Eckhoff D, Lee DD. Liver machine perfusion technology: Expanding the donor pool to improve access to liver transplantation. Am J Transplant 2024; 24:1664-1674. [PMID: 38508317 DOI: 10.1016/j.ajt.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The imbalance between organ supply and demand continues to limit the broader benefits of organ transplantation. Machine perfusion (MP) may increase the supply of donor livers by expanding the use of extended-criteria donors. Using the United Network for Organ Sharing/Organ Procurement and Transplantation Network and the Standard Transplant Analysis and Research dataset, we reviewed the effect of MP implementation on the behavior of transplant centers. We identified 15 high-utilizing MP centers that were matched to suitable controls based on volume and geographical proximity. We conducted a differences-in-differences analysis using linear regression to estimate the impact of MP adoption on the transplant centers' donor utilization. We found a significant increase in cold ischemia time and organs with donor warm ischemia time over 30 minutes (P < .05). After removing one outlier center, the analysis showed that these centers through MP accepted overall more donation after circulatory death donors, donation after circulatory death donors over 50 years old, donors with macrovesicular steatosis greater than 30% on liver biopsy, and donor warm ischemia time over 30 minutes (P < .05). MP has allowed centers to expand their use of extended-criteria donors beyond traditional cutoffs and to increase patient access to liver transplantation.
Collapse
Affiliation(s)
- Stalin Canizares
- Division of Transplant Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana Montalvan
- Division of Transplant Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ritah Chumdermpadetsuk
- Division of Transplant Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Devin Eckhoff
- Division of Transplant Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David D Lee
- Division of Transplant Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Prudhomme T, Mesnard B, Branchereau J, Roumiguié M, Maulat C, Muscari F, Kamar N, Soulié M, Gamé X, Sallusto F, Timsit MO, Drouin S. Simultaneous liver-kidney transplantation: future perspective. World J Urol 2024; 42:489. [PMID: 39162870 PMCID: PMC11335780 DOI: 10.1007/s00345-024-05174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The aims of this narrative review were (i) to describe the current indications of SLKT, (ii) to report evolution of SLKT activity, (iii) to report the outcomes of SLKT, (iv) to explain the immune-protective effect of liver transplant on kidney transplant, (v) to explain the interest of delay kidney transplantation, using hypothermic machine perfusion (HMP), (vi) to report kidney after liver transplantation (KALT) indications and (vii) to describe the value of the increase in the use of extended criteria donors (ECD) and particular controlled donation after circulatory death (cDCD) transplant, thanks to the development of new organ preservation strategies. METHOD Electronic databases were screened using the keywords "Simultaneous", "Combined", "kidney transplantation" and "liver transplantation". The methodological and clinical heterogeneity of the included studies meant that meta-analysis was inappropriate. RESULTS A total of 1,917 publications were identified in the literature search. Two reviewers screened all study abstracts independently and 1,107 of these were excluded. Thus, a total of 79 full text articles were assessed for eligibility. Of these, 21 were excluded. In total, 58 studies were included in this systematic review. CONCLUSIONS Simultaneous liver-kidney transplantation has made a significant contribution for patients with dual-organ disease. The optimization of indication and selection of SLKT patients will reduce futile transplantation. Moreover, increasing the use of transplants from extended criteria donors, in particular cDCD, should be encouraged, thanks to the development of new modalities of organ preservation.
Collapse
Affiliation(s)
- Thomas Prudhomme
- Department of Urology, Kidney Transplantation and Andrology, TSA 50032 Rangueil Hospital, Toulouse Cedex 9, 31059, France.
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, Nantes, 44000, France.
| | - Benoit Mesnard
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, Nantes, 44000, France
- Department of Urology, University Hospital of Nantes, Nantes, France
| | - Julien Branchereau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, Nantes, 44000, France
- Department of Urology, University Hospital of Nantes, Nantes, France
| | - Mathieu Roumiguié
- Department of Urology, Kidney Transplantation and Andrology, TSA 50032 Rangueil Hospital, Toulouse Cedex 9, 31059, France
| | - Charlotte Maulat
- Department of Digestive Surgery, University Hospital of Rangueil, Toulouse, France
| | - Fabrice Muscari
- Department of Digestive Surgery, University Hospital of Rangueil, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, University Hospital of Rangueil, Toulouse, France
| | - Michel Soulié
- Department of Urology, Kidney Transplantation and Andrology, TSA 50032 Rangueil Hospital, Toulouse Cedex 9, 31059, France
| | - Xavier Gamé
- Department of Urology, Kidney Transplantation and Andrology, TSA 50032 Rangueil Hospital, Toulouse Cedex 9, 31059, France
| | - Federico Sallusto
- Department of Urology, Kidney Transplantation and Andrology, TSA 50032 Rangueil Hospital, Toulouse Cedex 9, 31059, France
| | - Marc Olivier Timsit
- Department of Urology, Hôpital Européen Georges Pompidou, APHP-Centre, Paris, France
| | - Sarah Drouin
- Service Médico-Chirurgical de Transplantation Rénale, APHP Sorbonne-Université, Hôpital Pitié-Salpêtrière, Paris, Île-de-France, France
| |
Collapse
|
20
|
Pérez L, Sabate A, Gutierrez R, Caballero M, Pujol R, Llaurado S, Peñafiel J, Hereu P, Blasi A. Risk factors associated with blood transfusion in liver transplantation. Sci Rep 2024; 14:19022. [PMID: 39152310 PMCID: PMC11329499 DOI: 10.1038/s41598-024-70078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
To explore preoperative and operative risk factors for red blood cell (RBC) transfusion requirements during liver transplantation (LT) and up to 24 h afterwards. We evaluated the associations between risk factors and units of RBC transfused in 176 LT patients using a log-binomial regression model. Relative risk was adjusted for age, sex, and the model for end-stage liver disease score (MELD) (adjustment 1) and baseline hemoglobin concentration (adjustment 2). Forty-six patients (26.14%) did not receive transfusion. Grafts from cardiac-death donors were used in 32.61% and 31.54% of non-transfused and transfused patients, respectively. The transfused group required more reoperation for bleeding (P = 0.035), longer mechanical ventilation after LT (P < 0.001), and longer ICU length of stay (P < 0.001). MELD and hemoglobin concentrations determined RBC requirements. For each unit of increase in the MELD score, 2% more RBC units were transfused, and non-transfusion was 0.83-fold less likely. For each 10-g/L higher hemoglobin concentration at baseline, 16% less RBC transfused, and non-transfusion was 1.95-fold more likely. Ascites was associated with 26% more RBC transfusions. With an increase of 2 mm from the baseline in the A10FIBTEM measurement of maximum clot firmness, non-transfusion was 1.14-fold more likely. A 10-min longer cold ischemia time was associated with 1% more RBC units transfused, and the presence of post-reperfusion syndrome with 45% more RBC units. We conclude that preoperative correction of anemia should be included in LT. An intervention to prevent severe hypotension and fibrinolysis during graft reperfusion should be explored.Trial register: European Clinical Trials Database (EudraCT 2018-002,510-13) and ClinicalTrials.gov (NCT01539057).
Collapse
Grants
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- Project PI17/00743 Instituto de Salud Carlos III through
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
- PT17/0017/0010, PT20/000008 Spanish Clinical Research Network (SCReN) of the Bellvitge Biomedical Research Institute (IDIBELL), Platform SCReN
Collapse
Affiliation(s)
- Lourdes Pérez
- Department of Anesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Feixa Llarga S/N. Hospitalet., 08 907, Barcelona, Spain
| | - Antoni Sabate
- Department of Anesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Feixa Llarga S/N. Hospitalet., 08 907, Barcelona, Spain.
| | - Rosa Gutierrez
- Department of Anesthesiology, University Hospital of Cruces, Bilbao, Spain
| | - Marta Caballero
- Department of Anesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Feixa Llarga S/N. Hospitalet., 08 907, Barcelona, Spain
| | - Roger Pujol
- Department of Anesthesiology, Clinic Hospital, University of Barcelona Health Barcelona, Spain Campus, IDIBAPS, Barcelona, Spain
| | - Sandra Llaurado
- Department of Anesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Feixa Llarga S/N. Hospitalet., 08 907, Barcelona, Spain
| | - Judith Peñafiel
- UICEC, Biostatistics Unit (UBiDi), University of Barcelona Health Campus. IDIBELL, Barcelona, Spain
| | - Pilar Hereu
- UICEC, Biostatistics Unit (UBiDi), University of Barcelona Health Campus. IDIBELL, Barcelona, Spain
| | - Annabel Blasi
- Department of Anesthesiology, Clinic Hospital, University of Barcelona Health Barcelona, Spain Campus, IDIBAPS, Barcelona, Spain
| |
Collapse
|
21
|
Wehrle CJ, Panconesi R, Satish S, Maspero M, Jiao C, Sun K, Karakaya O, Allkushi E, Modaresi Esfeh J, Whitsett Linganna M, Ma WW, Fujiki M, Hashimoto K, Miller C, Kwon DCH, Aucejo F, Schlegel A. The Impact of Biliary Injury on the Recurrence of Biliary Cancer and Benign Disease after Liver Transplantation: Risk Factors and Mechanisms. Cancers (Basel) 2024; 16:2789. [PMID: 39199562 PMCID: PMC11352383 DOI: 10.3390/cancers16162789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Liver transplantation is known to generate significant inflammation in the entire organ based on the metabolic profile and the tissue's ability to recover from the ischemia-reperfusion injury (IRI). This cascade contributes to post-transplant complications, affecting both the synthetic liver function (immediate) and the scar development in the biliary tree. The new occurrence of biliary strictures, and the recurrence of malignant and benign liver diseases, such as cholangiocarcinoma (CCA) and primary sclerosing cholangitis (PSC), are direct consequences linked to this inflammation. The accumulation of toxic metabolites, such as succinate, causes undirected electron flows, triggering the releases of reactive oxygen species (ROS) from a severely dysfunctional mitochondrial complex 1. This initiates the inflammatory IRI cascade, with subsequent ischemic biliary stricturing, and the upregulation of pro-tumorigenic signaling. Such inflammation is both local and systemic, promoting an immunocompromised status that can lead to the recurrence of underlying liver disease, both malignant and benign in nature. The traditional treatment for CCA was resection, when possible, followed by cytotoxic chemotherapy. Liver transplant oncology is increasingly recognized as a potentially curative approach for patients with intrahepatic (iCCA) and perihilar (pCCA) cholangiocarcinoma. The link between IRI and disease recurrence is increasingly recognized in transplant oncology for hepatocellular carcinoma. However, smaller numbers have prevented similar analyses for CCA. The mechanistic link may be even more critical in this disease, as IRI causes the most profound damage to the intrahepatic bile ducts. This article reviews the underlying mechanisms associated with biliary inflammation and biliary pathology after liver transplantation. One main focus is on the link between transplant-related IRI-associated inflammation and the recurrence of cholangiocarcinoma and benign liver diseases of the biliary tree. Risk factors and protective strategies are highlighted.
Collapse
Affiliation(s)
- Chase J. Wehrle
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Rebecca Panconesi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Sangeeta Satish
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Marianna Maspero
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, 20133 Milan, Italy
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Omer Karakaya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Erlind Allkushi
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maureen Whitsett Linganna
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wen Wee Ma
- Novel Therapeutics Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Masato Fujiki
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Charles Miller
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - David C. H. Kwon
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| |
Collapse
|
22
|
Müller PC, Müller BP, Dutkowski P. [Organ donation and organ assessment after primary circulatory death and secondary brain death]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:618-626. [PMID: 38750373 PMCID: PMC11286625 DOI: 10.1007/s00104-024-02094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The global organ shortage is the biggest obstacle to expand urgently needed liver transplantation activities. In addition to donation after brain death (DBD), donation after primary circulatory death (DCD) has also been introduced in many European countries to increase the number of donated organs. OBJECTIVE This article summarizes the legal and ethical aspects of DCD, the practical donation process of DCD, the clinical results of DCD liver transplantation with a special focus on organ assessment before a planned DCD liver transplantation. RESULTS In Europe 11 countries have active DCD liver transplantation programs and a total of 1230 DCD liver transplantations were performed in Europe in 2023. The highest proportion of DCD liver transplantations were recorded in Belgium (52.8%), the Netherlands (42.8%) and Switzerland (32.1%). The adequate selection of donors and recipients is crucial in DCD transplantation and the use of DCD livers particularly depends on the preparedness of the healthcare system for routine machine perfusion. The leaders are Belgium, France and Italy which implant around 68-74% of DCD organs. With an adequate organ assessment, the long-term results of DBD and DCD liver transplantations are comparable. To assess mitochondrial damage and thus organ quality, hypothermic oxygenated machine perfusion (HOPE) was introduced and has the secondary benefit of mitochondrial protection through oxygenation. The establishment of aerobic metabolism in mitochondria under hypothermia leads to a reduction of toxic metabolites and the restoration of ATP storage, which subsequently leads to a reperfusion light during implantation. CONCLUSION Expanding the donor pool with DCD donors can counteract the global organ shortage. With adequate patient selection and routine organ assessment short-term and also long-term outcomes of DBD and DCD liver transplantation are comparable.
Collapse
Affiliation(s)
- Philip C Müller
- Klinik für Viszeralchirugie, Clarunis - Universitäres Bauchzentrum, Universitätsspital Basel, Basel, Schweiz
| | - Beat P Müller
- Klinik für Viszeralchirugie, Clarunis - Universitäres Bauchzentrum, Universitätsspital Basel, Basel, Schweiz
| | - Philipp Dutkowski
- Klinik für Viszeralchirugie, Clarunis - Universitäres Bauchzentrum, Universitätsspital Basel, Basel, Schweiz.
- Department of Surgery, Clarunis - University Digestive Health Care Centre Basel, Spitalstr. 21, 4031, Basel, Schweiz.
| |
Collapse
|
23
|
Kneifel F, Vondran F, Vogel T. [Machine perfusion in transplantation surgery]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:610-617. [PMID: 39052038 DOI: 10.1007/s00104-024-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The use of machine perfusion in solid organ transplantation has developed tremendously worldwide in recent years. Although the number of randomized controlled trials in the field of organ preservation is still limited, machine perfusion has been shown to be superior to static cold storage of donor organs. Various devices for clinical use with hypothermia or normothermia are already available for most organs. Whether and which perfusion strategy is superior to the others is the subject of current clinical research. This also applies to the further evaluation of possible synergistic effects in the sequential use of the various protocols. The common goal of all dynamic perfusion technologies is to optimize organ preservation between removal and transplantation. By testing the quality of marginal donor organs prior to transplantation, it should also be possible to use these organs without exposing the patient to increased risk. This can lead to a significant expansion of the donor pool. This is particularly important in Germany, where there is an ongoing shortage of organs and restrictive legislation regarding the expansion of the donor pool. Furthermore, the perfusion technology offers the possibility to serve as a platform for other ex situ and in situ therapies on isolated organs. In addition to the conditioning of pre-damaged organs for transplantation, this could lead to further applications in the context of targeted organ therapies and also to improved transplant logistics in the future.
Collapse
Affiliation(s)
- Felicia Kneifel
- Klinik für Allgemein‑, Viszeral- und Transplantationschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - Florian Vondran
- Klinik für Allgemein‑, Viszeral‑, Kinder- und Transplantationschirurgie, RWTH Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Thomas Vogel
- Klinik für Allgemein‑, Viszeral‑, Kinder- und Transplantationschirurgie, RWTH Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
24
|
Okumura K, Dhand A, Misawa R, Sogawa H, Veillette G, Nishida S. Normothermic Machine Perfusion Is Associated With Improvement in Mortality and Graft Failure in Donation After Cardiac Death Liver Transplant Recipients in the United States. Transplant Direct 2024; 10:e1679. [PMID: 38988687 PMCID: PMC11230788 DOI: 10.1097/txd.0000000000001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Indexed: 07/12/2024] Open
Abstract
Background Use of normothermic machine perfusion (NMP) may help to expand the liver transplantation (LT) donor pool by potentially increasing the utilization of donation after circulatory death (DCD) organs. The aim of this study was to assess the impact of NMP on LT from DCD organs. Methods Data among DCD adult LT recipients in the United Network for Organ Sharing between January 2016 and December 2022 were analyzed. Outcomes were compared between 2 groups: NMP versus non-MP using propensity score matching. Results During the study period, 4217 DCD LT recipients (NMP: 257 and non-MP: 3960) were identified. compared with non-MP, DCD LT recipients in NMP group were older (median recipient age: 61 versus 59 y, P = 0.013), had lower model for the end-stage liver disease score, longer wait time (126 versus 107 d, P = 0.028), and received organs from older donors (median age: 42 versus 38 y, P < 0.01) with longer preservation time (9.9 versus 5.3 h, P < 0.001). Two-year overall survival (NMP 94.4% versus non-MP 89.7%, P = 0.040) and 2-y graft survival (NMP 91.3% versus non-MP 84.6%, P = 0.017) were better in the NMP group. After propensity score matching, 2-y overall survival (NMP 94.2% versus non-MP 88.0%, P = 0.023) and graft survival (NMP 91.3% versus non-MP 81.6%, P = 0.004) were better in the NMP group. On multivariable cox regression analysis, NMP was an independent factor of protection against mortality (hazard ratio, 0.43; 95% confidence interval: 0.20-0.91; P = 0.029) and against graft failure (hazard ratio, 0.26; 95% confidence interval: 0.11-0.61; P = 0.002). Conclusions Use of NMP for LT from DCD donors was associated with improved posttransplant patient and graft survival.
Collapse
Affiliation(s)
- Kenji Okumura
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Abhay Dhand
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Ryosuke Misawa
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Hiroshi Sogawa
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Gregory Veillette
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Seigo Nishida
- Department of Surgery, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
25
|
Wehrle CJ, Jiao C, Sun K, Zhang M, Fairchild RL, Miller C, Hashimoto K, Schlegel A. Machine perfusion in liver transplantation: recent advances and coming challenges. Curr Opin Organ Transplant 2024; 29:228-238. [PMID: 38726745 DOI: 10.1097/mot.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW Machine perfusion has been adopted into clinical practice in Europe since the mid-2010s and, more recently, in the United States (US) following approval of normothermic machine perfusion (NMP). We aim to review recent advances, provide discussion of potential future directions, and summarize challenges currently facing the field. RECENT FINDINGS Both NMP and hypothermic-oxygenated perfusion (HOPE) improve overall outcomes after liver transplantation versus traditional static cold storage (SCS) and offer improved logistical flexibility. HOPE offers additional protection to the biliary system stemming from its' protection of mitochondria and lessening of ischemia-reperfusion injury. Normothermic regional perfusion (NRP) is touted to offer similar protective effects on the biliary system, though this has not been studied prospectively.The most critical question remaining is the optimal use cases for each of the three techniques (NMP, HOPE, and NRP), particularly as HOPE and NRP become more available in the US. There are additional questions regarding the most effective criteria for viability assessment and the true economic impact of these techniques. Finally, with each technique purported to allow well tolerated use of riskier grafts, there is an urgent need to define terminology for graft risk, as baseline population differences make comparison of current data challenging. SUMMARY Machine perfusion is now widely available in all western countries and has become an essential tool in liver transplantation. Identification of the ideal technique for each graft, optimization of viability assessment, cost-effectiveness analyses, and proper definition of graft risk are the next steps to maximizing the utility of these powerful tools.
Collapse
Affiliation(s)
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mingyi Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | | | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Croome KP. Should advanced perfusion be the standard of care for donation after circulatory death liver transplant? Am J Transplant 2024; 24:1127-1131. [PMID: 38514015 DOI: 10.1016/j.ajt.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
As an alternative to static cold storage (SCS), advanced perfusion techniques such as normothermic regional perfusion and ex-situ perfusion (normothermic or hypothermic) have emerged as a way to improve the ischemic injury suffered by donation after circulatory death (DCD) livers. Multiple studies have been published that have demonstrated superior post-DCD liver transplant outcomes when using advanced perfusion compared with SCS. In particular, these studies have shown lower rates of ischemic cholangiopathy with advanced perfusion. In addition to the improved post-liver transplant outcomes, studies have also demonstrated higher rates of liver utilization from DCD donors when advanced perfusion is used compared with SCS. Given the high rates of graft loss in patients who develop ischemic cholangiopathy, the significant reduction seen in DCD donor livers that have undergone advanced perfusion represents a key step in more broad utilization of these livers. With such compelling evidence from multiple trials, it seems reasonable to ask the question: should advanced perfusion be the standard of care for DCD liver transplant?
Collapse
|
27
|
Semash K, Salimov U, Dzhanbekov T, Sabirov D. Liver Graft Machine Perfusion: From History Perspective to Modern Approaches in Transplant Surgery. EXP CLIN TRANSPLANT 2024; 22:497-508. [PMID: 39223808 DOI: 10.6002/ect.2024.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The shortage of donor organs remains an unresolved issue in livertransplantation worldwide. Consequently, strategies for expanding the donor pool are currently being developed. Donors meeting extended criteria undergo thorough evaluation, as livers obtained from marginal donors yield poorer outcomes in recipients, including exacerbated reperfusion injury, acute kidney injury, early graft dysfunction, and primary nonfunctioning graft. However, the implementation of machine perfusion has shown excellent potential in preserving donor livers and improving their characteristics to achieve better outcomes for recipients. In this review, we analyzed the global experience of using machine perfusion in livertransplantation through the history ofthe development ofthis method to the latest trends and possibilities for increasing the number of liver transplants.
Collapse
|
28
|
Akabane M, Imaoka Y, Esquivel CO, Kim WR, Sasaki K. The Spread Pattern of New Practice in Liver Transplantation in the United States. Clin Transplant 2024; 38:e15379. [PMID: 38952196 DOI: 10.1111/ctr.15379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Introducing new liver transplantation (LT) practices, like unconventional donor use, incurs higher costs, making evaluation of their prognostic justification crucial. This study reexamines the spread pattern of new LT practices and its prognosis across the United States. METHODS The study investigated the spread pattern of new practices using the UNOS database (2014-2023). Practices included LT for hepatitis B/C (HBV/HCV) nonviremic recipients with viremic donors, LT for COVID-19-positive recipients, and LT using onsite machine perfusion (OMP). One year post-LT patient and graft survival were also evaluated. RESULTS LTs using HBV/HCV donors were common in the East, while LTs for COVID-19 recipients and those using OMP started predominantly in California, Arizona, Texas, and the Northeast. K-means cluster analysis identified three adoption groups: facilities with rapid, slow, and minimal adoption rates. Rapid adoption occurred mainly in high-volume centers, followed by a gradual increase in middle-volume centers, with little increase in low-volume centers. The current spread patterns did not significantly affect patient survival. Specifically, for LTs with HCV donors or COVID-19 recipients, patient and graft survivals in the rapid-increasing group was comparable to others. In LTs involving OMP, the rapid- or slow-increasing groups tended to have better patient survival (p = 0.05) and significantly improved graft survival rates (p = 0.02). Facilities adopting new practices often overlap across different practices. DISCUSSION Our analysis revealed three distinct adoption groups across all practices, correlating the adoption aggressiveness with LT volume in centers. Aggressive adoption of new practices did not compromise patient and graft survivals, supporting the current strategy. Understanding historical trends could predict the rise in future LT cases with new practices, aiding in resource distribution.
Collapse
Affiliation(s)
- Miho Akabane
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - Carlos O Esquivel
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - W Ray Kim
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
29
|
Feng GY, Feng X, Tao J, Ao YP, Wu XH, Qi SG, He ZB, Shi ZR. Benefits of Hypothermic Oxygenated Perfusion Versus Static Cold Storage in Liver Transplant: A Comprehensive Systematic Review and Meta-analysis. J Clin Exp Hepatol 2024; 14:101337. [PMID: 38298754 PMCID: PMC10825013 DOI: 10.1016/j.jceh.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024] Open
Abstract
Background The magnitude of potential benefits that hypothermic oxygenated perfusion (HOPE) may provide for liver transplantation (LT) patients compared to static cold storage (SCS) remains uncertain. In this systematic review and meta-analysis, we aimed to investigate the therapeutic effect that HOPE can offer LT recipients relative to SCS by synthesizing available evidence. Methods A literature search was conducted in Embase, Medline, Web of Science, and the Cochrane database up to 1 June, 2023. The included studies were pooled for meta-analysis to synthesize their findings. Subgroup analysis was performed to investigate potential differences between HOPE and SCS for specific subgroups. Results A total of 11 studies comprising 1765 patients were included. Compared with SCS, HOPE was associated with a significant reduction in the incidence of early allograft dysfunction (EAD) (OR: 0.36, 95% CI: 0.26-0.50), as well as a noteworthy decrease in graft loss rate within one year (OR: 0.57, 95% CI: 0.33-0.97) and a lower occurrence of Clavien-Dindo grade IIIa or higher complications (OR: 0.62, 95% CI: 0.43-0.89). Subgroup analysis revealed that HOPE significantly reduced the one-year mortality rate, any biliary complications incidence, and acute rejection of transplanted liver rate in patients who received organs from donation after cardiac death (DCD). Conclusions HOPE has demonstrated efficacy in reducing the incidence of EAD after LT and shows some potential in diminishing postoperative complications such as biliary complications and acute rejection. This ultimately leads to improved patient prognosis, particularly among those receiving DCD grafts.
Collapse
Affiliation(s)
- Guo-Ying Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xu Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Pei Ao
- Infection and Liver Disease Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Hua Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Guai Qi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Bo He
- Department of General Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Zheng-Rong Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Panayotova GG, Lunsford KE, Quillin RC, Rana A, Agopian VG, Lee-Riddle GS, Markovic D, Paterno F, Griesemer AD, Amin A, Alonso D, Rocca JP, Borja-Cacho D, Hernandez-Alejandro R, Fung JJ, Pelletier SJ, Shah SA, Guarrera JV. Portable hypothermic oxygenated machine perfusion for organ preservation in liver transplantation: A randomized, open-label, clinical trial. Hepatology 2024; 79:1033-1047. [PMID: 38090880 PMCID: PMC11019979 DOI: 10.1097/hep.0000000000000715] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS In liver transplantation, cold preservation induces ischemia, resulting in significant reperfusion injury. Hypothermic oxygenated machine perfusion (HMP-O 2 ) has shown benefits compared to static cold storage (SCS) by limiting ischemia-reperfusion injury. This study reports outcomes using a novel portable HMP-O 2 device in the first US randomized control trial. APPROACH AND RESULTS The PILOT trial (NCT03484455) was a multicenter, randomized, open-label, noninferiority trial, with participants randomized to HMP-O 2 or SCS. HMP-O 2 livers were preserved using the Lifeport Liver Transporter and Vasosol perfusion solution. The primary outcome was early allograft dysfunction. Noninferiority margin was 7.5%. From April 3, 2019, to July 12, 2022, 179 patients were randomized to HMP-O 2 (n=90) or SCS (n=89). The per-protocol cohort included 63 HMP-O 2 and 73 SCS. Early allograft dysfunction occurred in 11.1% HMP-O 2 (N=7) and 16.4% SCS (N=12). The risk difference between HMP-O 2 and SCS was -5.33% (one-sided 95% upper confidence limit of 5.81%), establishing noninferiority. The risk of graft failure as predicted by Liver Graft Assessment Following Transplant score at seven days (L-GrAFT 7 ) was lower with HMP-O 2 [median (IQR) 3.4% (2.4-6.5) vs. 4.5% (2.9-9.4), p =0.024]. Primary nonfunction occurred in 2.2% of all SCS (n=3, p =0.10). Biliary strictures occurred in 16.4% SCS (n=12) and 6.3% (n=4) HMP-O 2 ( p =0.18). Nonanastomotic biliary strictures occurred only in SCS (n=4). CONCLUSIONS HMP-O 2 demonstrates safety and noninferior efficacy for liver graft preservation in comparison to SCS. Early allograft failure by L-GrAFT 7 was lower in HMP-O 2 , suggesting improved early clinical function. Recipients of HMP-O 2 livers also demonstrated a lower incidence of primary nonfunction and biliary strictures, although this difference did not reach significance.
Collapse
Affiliation(s)
- Guergana G. Panayotova
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Keri E. Lunsford
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - R. Cutler Quillin
- Department of Surgery, Division of Transplantation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Abbas Rana
- Department of Surgery, Division of Abdominal Transplantation and Hepatobiliary Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Vatche G. Agopian
- Department of Surgery, Dumont-UCLA Liver Cancer and Transplant Center, Pfleger Liver Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Grace S. Lee-Riddle
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Daniela Markovic
- Department of Surgery, Dumont-UCLA Liver Cancer and Transplant Center, Pfleger Liver Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Flavio Paterno
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adam D. Griesemer
- Department of Surgery, Transplant Institute, NYU Langone Medical Center, New York, New York, USA
| | - Arpit Amin
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diane Alonso
- Department of Transplant, Intermountain Medical Center, Murray, Utah, USA
| | - Juan P. Rocca
- Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Daniel Borja-Cacho
- Department of Surgery, Division of Transplantation, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Rochester, Rochester, New York, USA
| | - John J. Fung
- Department of Surgery, Section of Abdominal Organ Transplantation, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Shawn J. Pelletier
- Department of Surgery, Division of Transplantation Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shimul A. Shah
- Department of Surgery, Division of Transplantation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James V. Guarrera
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
31
|
Svensson CJ, Öberg J, Dellgren G, Gäbel M, Oras J. Donor heart dysfunction and graft survival in liver and kidney transplants-A register-based study from Sweden. Clin Transplant 2024; 38:e15333. [PMID: 38739219 DOI: 10.1111/ctr.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND AIM Stress cardiomyopathy in donors can potentially affect graft function and longevity. This study aims to investigate the association between echocardiographic left ventricular ejection fraction (LVEF) < 50%, and/or the presence of left ventricular regional wall motion abnormalities (RWMA) in organ donors, and short- and long-term liver and kidney graft survival. Our secondary aim was to link graft survival with donor and recipient characteristics. METHODS All donors considered for liver and kidney donation with echocardiographic records at Sahlgrenska University Hospital between 2006 and 2016 were matched with their recipients through the Scandiatransplant register. The studied outcomes were graft survival, re-transplantation, and recipient death. Kaplan-Meier curves were used to plot time to event. Multivariate Cox-regression was used to test independence. RESULTS There were 370 liver donors and 312 kidney donors (matched with 458 recipients) with echocardiographic records at Sahlgrenska University Hospital between June 2006 and November 2016. Of patients with LV dysfunction by echocardiography, there were 102 liver- and 72 kidney donors. Univariate survival analyses showed no statistical difference in the short- and long-term graft survival from donors with LV dysfunction compared to donors without. Donor age > 65 years, recipient re-transplantation and recipient liver tumor were predictors of worse outcome in liver transplants (p < .05). Donor age > 65, donor hypertension, recipient re-transplantation, and a recipient diagnosis of diabetes or nephritis/glomerulonephritis had a negative association with graft survival in kidney transplants (p < .05). CONCLUSION We found no significant association between donor LV dysfunction and short- and long-term graft survival in liver and kidney transplants, suggesting that livers and kidneys from such donors can be safely transplanted.
Collapse
Affiliation(s)
- Carl Johan Svensson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefin Öberg
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Transplant Institute, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Gäbel
- Department of Cardiothoracic Surgery, Transplant Institute, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, Kasahara M, Dutkowski P, Schlegel A. Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: Why are we not there yet? Hepatology 2024; 79:713-730. [PMID: 37013926 DOI: 10.1097/hep.0000000000000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
Machine perfusion of solid human organs is an old technique, and the basic principles were presented as early as 1855 by Claude Barnard. More than 50 years ago, the first perfusion system was used in clinical kidney transplantation. Despite the well-known benefits of dynamic organ preservation and significant medical and technical development in the last decades, perfusion devices are still not in routine use. This article describes the various challenges to implement this technology in practice, critically analyzing the role of all involved stakeholders, including clinicians, hospitals, regulatory, and industry, on the background of regional differences worldwide. The clinical need for this technology is discussed first, followed by the current status of research and the impact of costs and regulations. Considering the need for strong collaborations between clinical users, regulatory bodies, and industry, integrated road maps and pathways required to achieve a wider implementation are presented. The role of research development, clear regulatory pathways, and the need for more flexible reimbursement schemes is discussed together with potential solutions to address the most relevant hurdles. This article paints an overall picture of the current liver perfusion landscape and highlights the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Rutgers New Jersey Medical School, Department of Surgery, Newark, New Jersey, USA
| | - Pranjal R Modi
- Department of Transplantation Surgery, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, 20100 Milan, Italy
| |
Collapse
|
33
|
Kojima H, Hirao H, Kadono K, Ito T, Yao S, Torgerson T, Dery KJ, Kitajima H, Ogawa T, Kaldas FM, Farmer DG, Kupiec-Weglinski JW. Cold stress-induced ferroptosis in liver sinusoidal endothelial cells determines liver transplant injury and outcomes. JCI Insight 2024; 9:e174354. [PMID: 38329125 PMCID: PMC10967411 DOI: 10.1172/jci.insight.174354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Although cold preservation remains the gold standard in organ transplantation, cold stress-induced cellular injury is a significant problem in clinical orthotopic liver transplantation (OLT). Because a recent study showed that cold stress activates ferroptosis, a form of regulated cell death, we investigated whether and how ferroptosis determines OLT outcomes in mice and humans. Treatment with ferroptosis inhibitor (ferrostatin-1) during cold preservation reduced lipid peroxidation (malondialdehyde; MDA), primarily in liver sinusoidal endothelial cells (LSECs), and alleviated ischemia/reperfusion injury in mouse OLT. Similarly, ferrostatin-1 reduced cell death in cold-stressed LSEC cultures. LSECs deficient in nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of ferroptosis, were susceptible to cold stress-induced cell death, concomitant with enhanced endoplasmic reticulum (ER) stress and expression of mitochondrial Ca2+ uptake regulator (MICU1). Indeed, supplementing MICU1 inhibitor reduced ER stress, MDA expression, and cell death in NRF2-deficient but not WT LSECs, suggesting NRF2 is a critical regulator of MICU1-mediated ferroptosis. Consistent with murine data, enhanced liver NRF2 expression reduced MDA levels, hepatocellular damage, and incidence of early allograft dysfunction in human OLT recipients. This translational study provides a clinically applicable strategy in which inhibition of ferroptosis during liver cold preservation mitigates OLT injury by protecting LSECs from peritransplant stress via an NRF2-regulatory mechanism.
Collapse
Affiliation(s)
- Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Siyuan Yao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Taylor Torgerson
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, California, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
34
|
Czigany Z, Uluk D, Pavicevic S, Lurje I, Froněk J, Keller T, Strnad P, Jiang D, Gevers T, Koliogiannis D, Guba M, Tolba RH, Meister FA, Neumann UP, Kocik M, Kysela M, Sauer IM, Raschzok N, Schöning W, Popescu I, Tacke F, Pratschke J, Lurje G. Improved outcomes after hypothermic oxygenated machine perfusion in liver transplantation-Long-term follow-up of a multicenter randomized controlled trial. Hepatol Commun 2024; 8:e0376. [PMID: 38315126 PMCID: PMC10843418 DOI: 10.1097/hc9.0000000000000376] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND While 4 randomized controlled clinical trials confirmed the early benefits of hypothermic oxygenated machine perfusion (HOPE), high-level evidence regarding long-term clinical outcomes is lacking. The aim of this follow-up study from the HOPE-ECD-DBD trial was to compare long-term outcomes in patients who underwent liver transplantation using extended criteria donor allografts from donation after brain death (ECD-DBD), randomized to either HOPE or static cold storage (SCS). METHODS Between September 2017 and September 2020, recipients of liver transplantation from 4 European centers receiving extended criteria donor-donation after brain death allografts were randomly assigned to HOPE or SCS (1:1). Follow-up data were available for all patients. Analyzed endpoints included the incidence of late-onset complications (occurring later than 6 months and graded according to the Clavien-Dindo Classification and the Comprehensive Complication Index) and long-term graft survival and patient survival. RESULTS A total of 46 patients were randomized, 23 in both arms. The median follow-up was 48 months (95% CI: 41-55). After excluding early perioperative morbidity, a significant reduction in late-onset morbidity was observed in the HOPE group (median reduction of 23 Comprehensive Complication Index-points [p=0.003] and lower incidence of major complications [Clavien-Dindo ≥3, 43% vs. 85%, p=0.009]). Primary graft loss occurred in 13 patients (HOPE n=3 vs. SCS n=10), resulting in a significantly lower overall graft survival (p=0.029) and adverse 1-, 3-, and 5-year survival probabilities in the SCS group, which did not reach the level of significance (HOPE 0.913, 0.869, 0.869 vs. SCS 0.783, 0.606, 0.519, respectively). CONCLUSIONS Our exploratory findings indicate that HOPE reduces late-onset morbidity and improves long-term graft survival providing clinical evidence to further support the broad implementation of HOPE in human liver transplantation.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
| | - Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum, Charité –Universitätsmedizin Berlin, Germany
| | - Jiří Froněk
- Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Theresa Keller
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Institute for Biometry and Clinical Epidemiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Decan Jiang
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Gevers
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Dionysios Koliogiannis
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rene H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Franziska A. Meister
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Matej Kocik
- Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marek Kysela
- Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Irinel Popescu
- Department of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum, Charité –Universitätsmedizin Berlin, Germany
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
35
|
Longchamp A, Nakamura T, Uygun K, Markmann JF. Role of Machine Perfusion in Liver Transplantation. Surg Clin North Am 2024; 104:45-65. [PMID: 37953040 DOI: 10.1016/j.suc.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Given the current severe shortage of available livers for transplantation, there is an urgent need to maximize the utilization of donor organs. One of the strategies to increase the number of available livers for transplantation is to improve organ utilization through the use of elderly, overweight, or organs donated after circulatory death. However, the utilization of these "marginal" organs was associated with an increased risk of early allograft dysfunction, primary nonfunction, ischemic biliary complications, or even re-transplantation. Ischemia-reperfusion injury is a key mechanism in the pathogenesis of these complications.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsukasa Nakamura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Ruch B, Kumm K, Arias S, Katariya NN, Mathur AK. Donation After Circulatory Death Liver Transplantation: Early Challenges, Clinical Improvement, and Future Directions. Surg Clin North Am 2024; 104:27-44. [PMID: 37953039 DOI: 10.1016/j.suc.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Donation after circulatory death (DCD) liver allografts remain a widely underutilized source of donor organs for transplantation. Although initially linked with inferior outcomes, DCD liver transplant can achieve excellent patient and graft survival with suitable matching of donor and recipient characteristics, rapid donor recovery and precise donor assessment, and appropriate perioperative management. The advent of clinical liver perfusion modalities promises to redefine the viability parameters for DCD liver allografts and hopefully will encourage more widespread usage of this growing source of donor livers.
Collapse
Affiliation(s)
- Brianna Ruch
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA. https://twitter.com/BriannaCRuch
| | - Kayla Kumm
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA. https://twitter.com/Kayla_Kumm
| | - Sandra Arias
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Nitin N Katariya
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA. https://twitter.com/nnk_tx_hpb
| | - Amit K Mathur
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
37
|
Ghinolfi D, Patrono D, De Carlis R, Melandro F, Buscemi V, Farnesi F, Torri F, Lauterio A, Di Salvo M, Cerchione R, Zanierato M, Morganti R, Romagnoli R, De Simone P, De Carlis L. Liver transplantation with uncontrolled versus controlled DCD donors using normothermic regional perfusion and ex-situ machine perfusion. Liver Transpl 2024; 30:46-60. [PMID: 37450659 DOI: 10.1097/lvt.0000000000000219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
In Italy, 20 minutes of continuous, flat-line electrocardiogram are required for death declaration, which significantly increases the risks of donation after circulatory death (DCD) LT. Despite prolonged warm ischemia time, Italian centers reported good outcomes in controlled donation after circulatory death LT by combining normothermic regional and end-ischemic machine perfusion. However, data on uncontrolled DCD (uDCD) LT performed by this approach are lacking. This was a multicenter, retrospective study performed at 3 large-volume centers comparing clinical outcomes of uncontrolled versus controlled DCD LT. The aim of the study was to assess outcomes of sequential normothermic regional perfusion and end-ischemic machine perfusion in uncontrolled DCD liver transplantation (LT). Of 153 DCD donors evaluated during the study period, 40 uDCD and 59 donation after circulatory death grafts were transplanted (utilization rate 52% vs. 78%, p = 0.004). Recipients of uDCD grafts had higher MEAF (4.9 vs. 3.5, p < 0.001) and CCI scores at discharge (24.4 vs. 8.7, p = 0.026), longer ICU stay (5 vs. 4 d, p = 0.047), and a trend toward more severe AKI. At multivariate analysis, 90-day graft loss was associated with recipient BMI and lactate downtrend during normothermic regional perfusion. One-year graft survival was lower in uDCD (75% vs. 90%, p = 0.007) but became comparable when non-liver-related graft losses were treated as censors (77% vs. 90%, p = 0.100). The incidence of ischemic cholangiopathy was 10% in uDCD versus 3% in donation after circulatory death, p = 0.356. uDCD LT with prolonged warm ischemia is feasible by the sequential use of normothermic regional perfusion and end-ischemic machine perfusion. Proper donor and recipient selection are key to achieving good outcomes in this setting.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Riccardo De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- PhD Course in Clinical and Experimental Sciences, University of Padua, Padua, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Vincenzo Buscemi
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesca Farnesi
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Andrea Lauterio
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Maria Di Salvo
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Raffaele Cerchione
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marinella Zanierato
- Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | | | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Luciano De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
38
|
Durand F. Current practice in liver transplantation. THE LIVER GRAFT BEFORE TRANSPLANTATION 2024:9-25. [DOI: 10.1016/b978-0-323-99655-6.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Yang S, Hou W, Liu L. Progress in preservation of intestinal grafts by oxygenated hypothermic machine perfusion. Transplant Rev (Orlando) 2024; 38:100802. [PMID: 37891046 DOI: 10.1016/j.trre.2023.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Intestine transplantation (IT) is a critical treatment strategy for irreversible intestinal failure. Among all abdominal solid organ transplants, the intestine was the most vulnerable to ischemia and reperfusion injury (IRI). The static cold storage (SCS) technique is currently the most commonly used graft preservation method, but its hypoxia condition causes metabolic disorders, resulting in the occurrence of IRI, limiting its application in marginal organs. It is especially important to improve preservation techniques in order to minimize damage to marginal donor organs, which draws more attention to machine perfusion (MP). There has been much debate about whether it is necessary to increase oxygen in these conditions to support low levels of metabolism since the use of machine perfusion to preserve organs. There is evidence that oxygenation helps to restore intracellular ATP levels in the intestine after thermal or cold ischemia damage. The goal of this review is to provide an overview of the role of oxygen in maintaining environmental stability in the gut under hypoxic conditions, as well as to investigate the possibilities and mechanisms of oxygen delivery during preservation in intestine transplantation studies and clinical models.
Collapse
Affiliation(s)
- Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
40
|
Tang G, Zhang L, Xia L, Zhang J, Wei Z, Zhou R. Hypothermic oxygenated perfusion in liver transplantation: a meta-analysis of randomized controlled trials and matched studies. Int J Surg 2024; 110:464-477. [PMID: 37738017 PMCID: PMC10793758 DOI: 10.1097/js9.0000000000000784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Hypothermic oxygenated machine perfusion (HOPE) is a novel organ-preservation technology designed to optimize organ quality. However, the effects of HOPE on morbidity and mortality after liver transplantation remain unclear. This meta-analysis evaluated the potential benefits of HOPE in liver transplantation. MATERIALS AND METHODS The Embase, Web of Science, PubMed, Cochrane Library, and Scopus databases were searched for articles published up to 15 June 2023 (updated on 12 August 2023). Mean differences (MDs), risk ratios (RRs), and 95% confidence intervals were calculated. RESULTS Eleven studies encompassing five randomized controlled trials and six matched studies were included, with a total of 1000 patients. HOPE did not reduce the incidence of major postoperative complications (RR 0.80), primary non-function (PNF) (RR 0.54), reperfusion syndrome (RR 0.92), hepatic artery thrombosis (RR 0.92), renal replacement therapy (RR 0.98), length of hospital stay (MD, -1.38 days), 1-year recipient death (RR 0.67), or intensive care unit stay (MD, 0.19 days) after liver transplantation. HOPE reduced the incidence of biliary complications (RR 0.74), non-anastomotic biliary strictures (NAS) (RR 0.34), early allograft dysfunction (EAD) (RR 0.54), and acute rejection (RR 0.54). In addition, HOPE improved the retransplantation (RR 0.42) and 1-year graft loss rates (RR 0.38). CONCLUSIONS Compared with static cold storage (SCS), HOPE can reduce the incidence of biliary complications, NAS, EAD, and acute rejection and retransplantation rate after liver transplantation and improve the 1-year graft loss rate. These findings suggest that HOPE, when compared to SCS, can contribute to minimizing complications and enhancing graft survival in liver transplantation. Further research is needed to investigate long-term outcomes and confirm the promising advantages of HOPE in liver transplantation settings.
Collapse
Affiliation(s)
- Gang Tang
- Biliary Surgical Department of West China Hospital
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | | | - Lingying Xia
- Biliary Surgical Department of West China Hospital
- Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan
| | - Jie Zhang
- Biliary Surgical Department of West China Hospital
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | | |
Collapse
|
41
|
Panconesi R, Carvalho MF, Eden J, Fazi M, Ansari F, Mancina L, Navari N, Sousa Da Silva RX, Dondossola D, Borrego LB, Pietzke M, Peris A, Meierhofer D, Muiesan P, Galkin A, Marra F, Dutkowski P, Schlegel A. Mitochondrial injury during normothermic regional perfusion (NRP) and hypothermic oxygenated perfusion (HOPE) in a rodent model of DCD liver transplantation. EBioMedicine 2023; 98:104861. [PMID: 37924707 PMCID: PMC10660010 DOI: 10.1016/j.ebiom.2023.104861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Normothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking. METHODS A rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury. FINDINGS Healthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%). INTERPRETATION High-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results. FUNDING Funding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, 10124, Turin, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | | | - Janina Eden
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Marilena Fazi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Leandro Mancina
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Richard Xavier Sousa Da Silva
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy
| | - Lucia Bautista Borrego
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Matthias Pietzke
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Center for Research, High Education and Transfer DENOThe, University of Florence, Florence, Italy
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
42
|
Eden J, Breuer E, Birrer D, Müller M, Pfister M, Mayr H, Sun K, Widmer J, Huwyler F, Ungethüm U, Humar B, Gupta A, Schiess S, Wendt M, Immer F, Elmer A, Meierhofer D, Schlegel A, Dutkowski P. Screening for mitochondrial function before use-routine liver assessment during hypothermic oxygenated perfusion impacts liver utilization. EBioMedicine 2023; 98:104857. [PMID: 37918219 PMCID: PMC10641151 DOI: 10.1016/j.ebiom.2023.104857] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND To report on a concept of liver assessment during ex situ hypothermic oxygenated perfusion (HOPE) and its significant impact on liver utilization. METHODS An analysis of prospectively collected data on donation after circulatory death (DCD) livers, treated by HOPE at our institution, during a 11-year period between January 2012 and December 2022. FINDINGS Four hundred and fifteen DCD Maastricht III livers were offered during the study period in Switzerland, resulting in 249 liver transplants. Of those, we performed 158 DCD III liver transplants at our institution, with 1-year patient survival and death censored graft survival (death with functioning graft) of 87 and 89%, respectively, thus comparable to benchmark graft survivals of ideal DBD and DCD liver transplants (89% and 86%). Correspondingly, graft loss for primary non-function or cholangiopathy was overall low, i.e., 7/158 (4.4%) and 11/158 (6.9%), despite more than 82% of DCD liver grafts ranked high (6-10 points) or futile risk (>10 points) according to the UK-DCD score. Consistently, death censored graft survival was not different between low-, high-risk or futile DCD III livers. The key behind these achievements was the careful development and implementation of a routine perfusate assessment of mitochondrial biomarkers for injury and function, i.e., release of flavin mononucleotide from complex I, perfusate NADH, and mitochondrial CO2 production during HOPE, allowing a more objective interpretation of liver quality on a subcellular level, compared to donor derived data. INTERPRETATION HOPE after cold storage is a highly suitable and easy to perform perfusion approach, which allows reliable liver graft assessment, enabling surgeons to make a fact based decision on whether or not to implant the organ. HOPE-treatment should be combined with viability assessment particularly when used for high-risk organs, including DCD livers or organs with relevant steatosis. FUNDING This study was supported by the Swiss National Foundation (SNF) grant 320030_189055/1 to PD.
Collapse
Affiliation(s)
- Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Dominique Birrer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matteo Müller
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Hemma Mayr
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Keyue Sun
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Florian Huwyler
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Udo Ungethüm
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Bostjan Humar
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Anurag Gupta
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Stefanie Schiess
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Martin Wendt
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Franz Immer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - Andreas Elmer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin 14195, Germany
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland.
| |
Collapse
|
43
|
Norén Å, Mölne J, Bennet W, Sörensen G, Herlenius G, Lindnér P, Oltean M. End-ischemic hypothermic oxygenated machine perfusion does not improve renal outcome following liver transplantation from aged donors: A single-center retrospective report. Artif Organs 2023; 47:1854-1864. [PMID: 37737446 DOI: 10.1111/aor.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/17/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Organ transplantation using grafts from elderly donors entails a higher risk for severe ischemia-reperfusion injury (IRI). Advanced IRI after liver transplantation (LT) seems to be associated with the development of acute kidney injury (AKI). We studied if end-ischemic hypothermic oxygenated machine perfusion (HOPE) of liver grafts, aimed at mitigating liver IRI, impacts on the frequency and severity of AKI after LT. METHODS LTs performed at our center between January 2017 and December 2022 using organs from deceased brain-dead donors aged 70 or older were reviewed. From November 2020 on, HOPE was performed routinely in this donor category. The frequency and severity of AKI (KDIGO criteria) within 48 hours of graft reperfusion and the model of early allograft function (MEAF) were compared between HOPE-LTs (n = 30) and control LTs (n = 71). RESULTS AKI developed in 23/30 (77%) HOPE-LTs and in 40/71 (56%) control LTs (p = n.s.), with no difference in severity and timing between groups. Renal replacement therapy was required in 3/30 (10%) HOPE-LTs and 6/71 (8%) control LTs. In addition, transaminase leak during the first week (marker of IRI) and MEAF were similar between groups. These findings persisted after propensity matching. Histology showed more hepatocyte vacuolization and higher Suzuki score in HOPE-LTs. Although this analysis could have been underpowered, no trends supporting the benefit of HOPE on liver and renal injury after LT were ever identified. CONCLUSIONS In conclusion, HOPE in this group of older donors does not seem to improve either graft IRI, or the incidence of early AKI after LT.
Collapse
Affiliation(s)
- Åsa Norén
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Mölne
- Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - William Bennet
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gustaf Sörensen
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gustaf Herlenius
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Lindnér
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
van der Meeren PE, de Wilde RF, Sprengers D, IJzermans JNM. Benefit and harm of waiting time in liver transplantation for HCC. Hepatology 2023:01515467-990000000-00646. [PMID: 37972979 DOI: 10.1097/hep.0000000000000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Liver transplantation is the most successful treatment for limited-stage HCC. The waiting time for liver transplantation (LT) can be a critical factor affecting the oncological prognosis and outcome of patients with HCC. Efficient strategies to optimize waiting time are essential to maximize the benefits of LT and to reduce the harm of delay in transplantation. The ever-increasing demand for donor livers emphasizes the need to improve the organization of the waiting list for transplantation and to optimize organ availability for patients with and without HCC. Current progress in innovations to expand the donor pool includes the implementation of living donor LT and the use of grafts from extended donors. By expanding selection criteria, an increased number of patients are eligible for transplantation, which necessitates criteria to prevent futile transplantations. Thus, the selection criteria for LT have evolved to include not only tumor characteristics but biomarkers as well. Enhancing our understanding of HCC tumor biology through the analysis of subtypes and molecular genetics holds significant promise in advancing the personalized approach for patients. In this review, the effect of waiting time duration on outcome in patients with HCC enlisted for LT is discussed.
Collapse
Affiliation(s)
- Pam Elisabeth van der Meeren
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roeland Frederik de Wilde
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology & Hepatology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jan Nicolaas Maria IJzermans
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
45
|
Caballero M, Sabate A, Perez L, Vidal J, Reverter E, Gutierrez R, Crespo G, Penafiel J, Blasi A. Factors associated with mechanical ventilation longer than 24 h after liver transplantation in patients at risk for bleeding. BMC Anesthesiol 2023; 23:356. [PMID: 37919695 PMCID: PMC10621188 DOI: 10.1186/s12871-023-02321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND This risk analysis aimed to explore all modifiable factors associated with prolonged mechanical ventilation (lasting > 24 h) after liver transplantation, based on prospectively collected data from a clinical trial. METHODS We evaluated 306 candidates. Ninety-three patients were excluded for low risk for transfusion (preoperative haemoglobin > 130 g.l-1), and 31 patients were excluded for anticoagulation therapy, bleeding disorders, familial polyneuropathy, or emergency status. Risk factors were initially identified with a log-binomial regression model. Relative risk was then calculated and adjusted for age, sex, and disease severity (Model for End-Stage Liver Disease [MELD] score). RESULTS Early tracheal extubation was performed in 149 patients (84.7%), and 27 patients (15.3%) required prolonged mechanical ventilation. Reoperations were required for 6.04% of the early extubated patients and 44% of patients who underwent prolonged ventilation (p = 0.001). A MELD score > 23 was the main risk factor for prolonged ventilation. Once modifiable risk factors were adjusted for MELD score, sex, and age, three factors were significantly associated with prolonged ventilation: tranexamic acid (p = 0.007) and red blood cell (p = 0.001) infusion and the occurrence of postreperfusion syndrome (p = 0.004). The median (IQR) ICU stay was 3 (2-4) days in the early extubation group vs. 5 (3-10) days in the prolonged ventilation group (p = 0.001). The median hospital stay was also significantly shorter after early extubation, at 14 (10-24) days, vs. 25 (14-55) days in the prolonged ventilation group (p = 0.001). Eight patients in the early-extubation group (5.52%) were readmitted to the ICU, nearly all for reoperations, with no between-group differences in ICU readmissions (prolonged ventilation group, 3.7%). CONCLUSION We conclude that bleeding and postreperfusion syndrome are the main modifiable factors associated with prolonged mechanical ventilation and length of ICU stay, suggesting that trials should explore vasopressor support strategies and other interventions prior to graft reperfusion that might prevent potential fibrinolysis. TRIAL REGISTRATION European Clinical Trials Database (EudraCT 2018-002510-13,) and on ClinicalTrials.gov (NCT01539057).
Collapse
Affiliation(s)
- Marta Caballero
- Department of Anaesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Barcelona, Spain
| | - Antoni Sabate
- Department of Anaesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Barcelona, Spain.
| | - Lourdes Perez
- Department of Anaesthesiology, University Hospital of Bellvitge, University of Barcelona Health Campus, IDIBELL, Barcelona, Spain
| | - Julia Vidal
- Department of Anaesthesiology, Clinic Hospital, University of Barcelona Health Campus, IDIBAPS, Barcelona, Spain
| | - Enric Reverter
- Department of Hepatology, Hospital Clínic, Barcelona, IDIBAPS, Spain
| | - Rosa Gutierrez
- Department of Anaesthesiology, University Hospital of Cruces, Bilbao, Spain
| | - Gonzalo Crespo
- Department of Hepatology, Liver Transplant Unit, Hospital Clínic, Barcelona; University of Barcelona; IDIBAPS; CIBERehd, Barcelona, Spain
| | - Judith Penafiel
- Biostatistics Unit (UBiDi), University of Barcelona Health Campus, IDIBELL, Barcelona, Spain
| | - Annabel Blasi
- Department of Anaesthesiology, Clinic Hospital, University of Barcelona Health Campus, IDIBAPS, Barcelona, Spain
| |
Collapse
|
46
|
Singh K, Kaistha S, Jain R, Khurana S. The yesterday, today and tomorrow of liver transplant. Med J Armed Forces India 2023; 79:638-644. [PMID: 37981927 PMCID: PMC10654371 DOI: 10.1016/j.mjafi.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 11/21/2023] Open
Abstract
With a very long history of setbacks and successes, organ transplantation is one of the greatest medical achievements of the twentieth century. Liver transplantation is currently the most effective method for treating end-stage liver disease. From humble beginnings, improvements in surgical technique, perioperative management, and immunosuppressive therapy have yielded excellent graft and patient outcomes. Most established 'liver transplant' (LT) centres have a 1-year survival rate exceeding 90%, and a 3-year survival rate of over 80%. With immense success, the need for hepatic grafts substantially exceeds their availability. This problem has been partially addressed by using split grafts, living donor liver transplantation (LDLT), and extended criteria grafts (ECG). This article reviews the immense progress made in various aspects of LT including evaluation, increasing donor pool, surgical advances, immunosuppression and anaesthesia related aspects and the way forward. With ongoing cutting edge research in technologies like artificial liver devices, tissue bioengineering and hepatocyte 'farms', the future of LT is more exciting than ever before.
Collapse
Affiliation(s)
- K.J. Singh
- Dy Commandant, Army Hospital (R&R), Delhi Cantt, India
| | - Sumesh Kaistha
- Senior Advisor (Surgery) & GI Surgeon, Army Hospital (R&R), Delhi Cantt, India
| | - Rahul Jain
- Senior Advisor (Medicine) & Gastroenterologist, Army Hospital (R&R), Delhi Cantt, India
| | - Saurabh Khurana
- Classified Specialist (Anaesthesia), Army Hospital (R&R), Delhi Cantt, India
| |
Collapse
|
47
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
48
|
Steinberg I, Patrono D, De Cesaris E, Lucà M, Catalano G, Marro M, Rizza G, Simonato E, Brazzi L, Romagnoli R, Zanierato M. Viability assessment of livers donated after circulatory determination of death during normothermic regional perfusion. Artif Organs 2023; 47:1592-1603. [PMID: 37548353 DOI: 10.1111/aor.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Abdominal normothermic regional perfusion (A-NRP) allows in-situ reperfusion and recovery of abdominal organs metabolism in donors after circulatory death (DCD). Besides improving liver transplantation outcomes, liver injury and function can be assessed during A-NRP. METHODS To refine liver viability assessment during A-NRP, prospectively collected data of controlled DCD donors managed at our Institution between October 2019 and May 2022 were retrospectively analyzed. Baseline characteristics, procedural variables and A-NRP parameters of donors whose liver was successfully transplanted were compared to those of donors whose liver was discarded. RESULTS Twenty-seven donors were included and in 20 (74%) the liver was accepted (positive outcome). No differences between study groups were observed concerning baseline characteristics and warm ischemia times (WIT). Initial lactate levels were positively correlated with functional WIT (r2 = 0.4, p = 0.04), whereas transaminase levels were not. Blood flow during A-NRP was comparable, whereas oxygen consumption (VO2 ) was significantly higher in the positive outcome group after 1 h. Time courses of lactate, AST and ALT were significantly different between study groups (p < 0.001). Donors whose liver was accepted showed faster lactate clearance, a difference which was amplified by normalizing lactate clearance to oxygen delivery (DO2 ) and VO2 . Lactate clearance was correlated to transaminase levels and DO2 -normalized lactate clearance was the parameter best discriminating between study groups. CONCLUSIONS DO2 -normalized lactate clearance may represent an element of liver viability assessment during A-NRP.
Collapse
Affiliation(s)
- Irene Steinberg
- Department of Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, Turin, Italy
| | - Damiano Patrono
- General Surgery 2U - Liver Transplant Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico De Cesaris
- Department of Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Michele Lucà
- Department of Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U - Liver Transplant Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Matteo Marro
- Cardiovascular Surgery, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U - Liver Transplant Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Erika Simonato
- Cardiovascular Surgery, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Brazzi
- Department of Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Renato Romagnoli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- General Surgery 2U - Liver Transplant Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marinella Zanierato
- Department of Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
49
|
Agostini C, Buccianti S, Risaliti M, Fortuna L, Tirloni L, Tucci R, Bartolini I, Grazi GL. Complications in Post-Liver Transplant Patients. J Clin Med 2023; 12:6173. [PMID: 37834818 PMCID: PMC10573382 DOI: 10.3390/jcm12196173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for liver failure and selected cases of malignancies. Transplantation activity has increased over the years, and indications for LT have been widened, leading to organ shortage. To face this condition, a high selection of recipients with prioritizing systems and an enlargement of the donor pool were necessary. Several authors published their case series reporting the results obtained with the use of marginal donors, which seem to have progressively improved over the years. The introduction of in situ and ex situ machine perfusion, although still strongly debated, and better knowledge and treatment of the complications may have a role in achieving better results. With longer survival rates, a significant number of patients will suffer from long-term complications. An extensive review of the literature concerning short- and long-term outcomes is reported trying to highlight the most recent findings. The heterogeneity of the behaviors within the different centers is evident, leading to a difficult comparison of the results and making explicit the need to obtain more consent from experts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ilenia Bartolini
- Department of Experimental and Clinical Medicine, AOU Careggi, 50134 Florence, Italy; (C.A.); (S.B.); (M.R.); (L.F.); (L.T.); (R.T.); (G.L.G.)
| | | |
Collapse
|
50
|
Iwata H, Obara H, Nakajo T, Kaneko H, Okazawa Y, Mohd Zin NK, Bochimoto H, Ohashi M, Kawada Y, Ohara M, Yokoo H, Matsuno N. Beneficial Effects of Combined Use of Extracorporeal Membrane Oxygenation and Hypothermic Machine Perfusion in Porcine Donors after Cardiac Death for Liver Transplantation. J Clin Med 2023; 12:6031. [PMID: 37762971 PMCID: PMC10532259 DOI: 10.3390/jcm12186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Grafts from donors after cardiac death (DCD) have greatly contributed to expanding the donor organ pool. This study aimed to determine the benefits of subnormothermic extracorporeal membrane oxygenation (ECMO) and hypothermic machine perfusion (HMP) in a porcine model of DCD liver. Female domestic crossbred Large Yorkshire and Landrace pigs weighing approximately 20 kg were used. The abdominal aorta and inferior vena cava were cannulated and connected to an ECMO circuit for in situ perfusion of the abdominal organs at 22 °C for 60 min, 45 min after cardiac death. The pigs were divided into the cold storage (CS) group (n = 3), where liver grafts were preserved at 4 °C, and the HMP group (n = 3), where liver grafts were preserved by HMP at 8-10 °C. After 4 h of preservation, liver function was evaluated using an isolated liver reperfusion model for 2 h. Although the difference was insignificant, the liver effluent enzyme levels in the HMP group were lower than those in the CS group. Furthermore, morphological findings showed fewer injured hepatocytes in the HMP group than in the CS group. The combined use of in situ subnormothermic ECMO and HMP was beneficial for the functional improvement of DCD liver grafts.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
- Department of Hepato-Biliary-Pancreatic and Transplantation Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan;
| | - Hiromichi Obara
- Department of Mechanical System Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; (H.O.); (Y.O.)
| | - Tetsuya Nakajo
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Hiroki Kaneko
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Yuga Okazawa
- Department of Mechanical System Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; (H.O.); (Y.O.)
| | - Nur Khatijah Mohd Zin
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku 105-8471, Japan; (N.K.M.Z.); (H.B.)
| | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku 105-8471, Japan; (N.K.M.Z.); (H.B.)
| | - Makito Ohashi
- Department of Clinical Engineering, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku 157-8535, Japan; (M.O.); (Y.K.)
| | - Yoko Kawada
- Department of Clinical Engineering, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku 157-8535, Japan; (M.O.); (Y.K.)
| | - Mizuho Ohara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Hideki Yokoo
- Department of Hepato-Biliary-Pancreatic and Transplantation Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan;
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| |
Collapse
|