1
|
Shi Q, Xue C, Zeng Y, Chu Q, Jiang S, Zhang Y, Yuan X, Zhu D, Li L. PPARα agonist ameliorates cholestatic liver injury by regulating hepatic macrophage homeostasis. Int J Biol Macromol 2025; 287:138510. [PMID: 39647740 DOI: 10.1016/j.ijbiomac.2024.138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Inflammatory response plays an essential role in the pathogenesis of cholestatic liver injury. PPARα agonists have been shown to regulate bile acid homeostasis and hepatic inflammation. However, the immunoregulatory mechanisms through which PPARα agonists ameliorate cholestatic liver injury remain unclear. In this study, surgical bile duct ligation was performed to establish a mouse model of cholestasis. Our study revealed that PPARα agonist alleviated cholestatic liver injury in mice by suppressing inflammatory response, reducing neutrophil infiltration, and promoting M2-like macrophage polarization. CyTOF analysis showed that PPARα agonist increased the proportion of anti-inflammatory F4/80hiCD44+MHCII- M2-like macrophages while decreasing the proportion of pro-inflammatory CD64+CX3CR1+CCR2hiVISTAhiCD172a+CD44hi M1-like MoMFs. Additionally, scRNA-seq indicated that PPARα agonist regulated the developmental trajectory and homeostasis of hepatic macrophages. Mechanistically, PPARα agonist may influence the expression of immune regulators in heterogeneous macrophages to exert protective effects against cholestasis. In addition, the CCL and MIF signaling pathways may participate in the communication among hepatic immune cells, including macrophages, neutrophils, natural killer cells, and dendritic cells, in response to the PPARα agonist. In conclusions, PPARα agonist alleviated cholestatic liver injury by attenuating the inflammatory response and restoring hepatic macrophage homeostasis. This study might enhance the understanding of the immunoregulatory mechanisms of PPARα agonists, providing promising therapeutic targets for cholestatic liver diseases.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Liu M, Wu E, Pan F, Tian K, Fu J, Yu Y, Guo Z, Ma Y, Wei A, Yu X, Zhan C, Qian J. Effects of drug-induced liver injury on the in vivo fate of liposomes. Eur J Pharm Biopharm 2024; 201:114389. [PMID: 38945407 DOI: 10.1016/j.ejpb.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Kaisong Tian
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Jiaru Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Anqi Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Xiaoyue Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China.
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
5
|
De Muynck K, Heyerick L, De Ponti FF, Vanderborght B, Meese T, Van Campenhout S, Baudonck L, Gijbels E, Rodrigues PM, Banales JM, Vesterhuus M, Folseraas T, Scott CL, Vinken M, Van der Linden M, Hoorens A, Van Dorpe J, Lefere S, Geerts A, Van Nieuwerburgh F, Verhelst X, Van Vlierberghe H, Devisscher L. Osteopontin characterizes bile duct-associated macrophages and correlates with liver fibrosis severity in primary sclerosing cholangitis. Hepatology 2024; 79:269-288. [PMID: 37535809 PMCID: PMC10789378 DOI: 10.1097/hep.0000000000000557] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.
Collapse
Affiliation(s)
- Kevin De Muynck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lander Heyerick
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Federico F. De Ponti
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart Vanderborght
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Sanne Van Campenhout
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Leen Baudonck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Eva Gijbels
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mette Vesterhuus
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Charlotte L. Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Liu X, Wang Y, Zhang S, Lu S, Lang J, Zhao Y. The roles of tissue resident macrophages in health and cancer. Exp Hematol Oncol 2024; 13:3. [PMID: 38229178 PMCID: PMC10790434 DOI: 10.1186/s40164-023-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.
Collapse
Affiliation(s)
- Minmin Cao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanying Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Guixi Community Health Center of the Chengdu High-Tech Zone, Chengdu, China
| | - Binghua Xiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:3056. [PMID: 38002056 PMCID: PMC10669188 DOI: 10.3390/biomedicines11113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | |
Collapse
|
8
|
Vanderborght B, De Muynck K, Gijbels E, Lefere S, Scott CL, Guilliams M, Beschin A, Vinken M, Verhelst X, Geerts A, Van Vlierberghe H, Devisscher L. Transient Kupffer cell depletion and subsequent replacement by infiltrating monocyte-derived cells does not alter the induction or progression of hepatocellular carcinoma. Int J Cancer 2023; 152:2615-2628. [PMID: 36912275 DOI: 10.1002/ijc.34505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
Due to a combination of rapid disease progression and the lack of curative treatment options, hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Infiltrated, monocyte-derived, tumor-associated macrophages are known to play a role in HCC pathogenesis, but the involvement of Kupffer cells (KCs) remains elusive. Here, we used the Clec4F-diphteria toxin receptor transgenic mouse model to specifically investigate the effect of KC depletion on HCC initiation, progression and neoplastic growth following liver resection. For this purpose, several HCC mouse models with varying underlying etiologies were used and partial hepatectomy was performed. Our results show that in HCC, developed on a fibrotic or non-alcoholic steatohepatitis background, depletion of embryonic KCs at the onset of HCC induction and the subsequent replacement by monocyte-derived KCs does not affect the tumor burden, tumor microenvironment or the phenotype of isolated KCs at end-stage disease. In non-chronic liver disease-associated diethylnitrosamine-induced HCC, ablation of Clec4F+ KCs did not alter tumor progression or neoplastic growth following liver resection. Our results show that temporal ablation of resident KCs does not impact HCC pathogenesis, neither in the induction phase nor in advanced disease, and indicate that bone marrow-derived KCs are able to swiftly repopulate the available KC niche and adopt their phenotype.
Collapse
Affiliation(s)
- Bart Vanderborght
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kevin De Muynck
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Eva Gijbels
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, 9000, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, 9000, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, 9000, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, 9000, Belgium
| | - Alain Beschin
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, 1090, Belgium
- Myeloid Cell Immunology Laboratory, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
9
|
De Muynck K, Vanderborght B, De Ponti FF, Gijbels E, Van Welden S, Guilliams M, Scott CL, Beschin A, Vinken M, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Devisscher L. Kupffer Cells Contested as Early Drivers in the Pathogenesis of Primary Sclerosing Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:366-379. [PMID: 36642171 DOI: 10.1016/j.ajpath.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic chronic immune-mediated cholestatic liver disease characterized by fibro-inflammatory bile duct strictures, progressive hepatobiliary fibrosis, and gut-liver axis disruption. The pathophysiology of PSC remains insufficiently characterized, which hampers the development of effective therapies. Hepatic macrophages (MFs) are implicated in PSC pathogenesis, but the exact role of Kupffer cells (KCs) is unclear. Using the latest markers to discriminate resident KCs (ResKCs) from their monocyte-derived counterparts (MoKCs), and two models for intrahepatic and extrahepatic cholestasis, respectively, this study shows that CLEC4F+TIM4+ ResKCs are depleted after chronic cholestatic liver injury, whereas infiltrating CLEC4F+TIM4- MoKCs are already enriched during the acute phase. Transcriptional profiling of hepatic MF subsets during early cholestatic injury indicates that ResKCs are indeed activated and that MoKCs express even higher levels of pro-inflammatory and proliferative markers compared with ResKCs. Conditional depletion of KCs, by using Clec4fDTR transgenic mice, before and during early cholestasis induction had no effect, however, on the composition of the hepatic myeloid cell pool following injury progression and did not affect disease outcomes. Taken together, these results provide new insights on the heterogeneity of the MF pool during experimental PSC and evidence that depletion of resident and activated KCs during sclerosing cholangitis does not affect disease outcome in mice.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Federico F De Ponti
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eva Gijbels
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Van Welden
- Inflammatory Bowel Disease Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Intestinal Barrier Signaling in Disease and Therapy, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Ghent, Belgium
| | - Alain Beschin
- Cellular & Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels, Belgium; Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium; Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Tomonari Y, Iwaki T, Arakawa T, Umemura K. Inhibition of plasminogen suppresses fibrosis and macrophage foaming in a nonalcoholic steatohepatitis mouse model. Fundam Clin Pharmacol 2022; 36:827-836. [PMID: 35261068 DOI: 10.1111/fcp.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Tomonari
- Department of Pharmacology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Takayuki Iwaki
- Department of Pharmacology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Tomohiro Arakawa
- Department of Pharmacology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Kazuo Umemura
- Department of Pharmacology Hamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
11
|
Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55:1515-1529. [PMID: 36103850 DOI: 10.1016/j.immuni.2022.08.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, County Limerick, Ireland.
| |
Collapse
|
12
|
Li W, Chang N, Li L. Heterogeneity and Function of Kupffer Cells in Liver Injury. Front Immunol 2022; 13:940867. [PMID: 35833135 PMCID: PMC9271789 DOI: 10.3389/fimmu.2022.940867] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Kupffer cells (KCs) are key regulators of liver immunity composing the principal part of hepatic macrophages even body tissue macrophages. They reside in liver sinusoids towards portal vein. The micro-environment shapes KCs unique immunosuppressive features and functions. KCs express specific surface markers that distinguish from other liver macrophages. By engulfing gut-derived foreign products and apoptotic cells without triggering excessive inflammation, KCs maintain homeostasis of liver and body. Heterogeneity of KCs has been identified in different studies. In terms of the origin, adult KCs are derived from progenitors of both embryo and adult bone marrow. Embryo-derived KCs compose the majority of KCs in healthy and maintain by self-renewal. Bone marrow monocytes replenish massively when embryo-derived KC proliferation are impaired. The phenotype of KCs is also beyond the traditional dogma of M1-M2. Functionally, KCs play central roles in pathogenesis of acute and chronic liver injury. They contribute to each pathological stage of liver disease. By initiating inflammation, regulating fibrosis, cirrhosis and tumor cell proliferation, KCs contribute to the resolution of liver injury and restoration of tissue architecture. The underlying mechanism varied by damage factors and pathology. Understanding the characteristics and functions of KCs may provide opportunities for the therapy of liver injury. Herein, we attempt to afford insights on heterogeneity and functions of KCs in liver injury using the existing findings.
Collapse
|
13
|
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Lee KJ, Kim MY, Han YH. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep 2022; 55:166-174. [PMID: 35321784 PMCID: PMC9058466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/21/2025] Open
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases. [BMB Reports 2022; 55(4): 166-174].
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
15
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
16
|
The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer. Cancers (Basel) 2021; 13:cancers13225719. [PMID: 34830874 PMCID: PMC8616349 DOI: 10.3390/cancers13225719] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development of chronic liver disease, the hepatic sinusoid undergoes major changes that further compromise the hepatic function, inducing persistent inflammation and the formation of scar tissue, together with alterations in liver hemodynamics. This diseased background may induce the formation and development of hepatocellular carcinoma (HCC), which is the most common form of primary liver cancer and a major cause of mortality. In this review, we describe the ways in which the dysregulation of hepatic sinusoidal cells—including liver sinusoidal cells, Kupffer cells, and hepatic stellate cells—may have an important role in the development of HCC. Our review summarizes all of the known sinusoidal processes in both health and disease, and possible treatments focusing on the dysregulation of the sinusoid; finally, we discuss how some of these alterations occurring during chronic injury are shared with the pathology of HCC and may contribute to its development. Abstract The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease.
Collapse
|
17
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
18
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget 2021; 12:562-577. [PMID: 33796224 PMCID: PMC7984829 DOI: 10.18632/oncotarget.27906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. HCC typically develops on a background of chronic inflammation and fibrosis with tumor associated macrophages (TAMs) playing an important role in chronic inflammation-induced HCC and progression. However, the liver harbors unique macrophages, resident liver Kupffer cells (KCs) and monocyte-derived macrophages (Mo-Mφ), and their contribution to HCC and to the population of TAMs is incompletely known. Here, we characterized the tumor microenvironment and the proportion and transcriptional profile of hepatic macrophages (Mφ) in two commonly used HCC mouse models. A gradually increased expression of inflammatory, immune regulatory, fibrotic and cell proliferation pathways and markers was observed during diethylnitrosamine (DEN)- and non-alcoholic steatohepatitis (NASH)-induced HCC development. The transcriptional phenotypes of isolated hepatic Mφ subsets were clearly distinct and shifted during HCC development, with mixed pro-inflammatory and tumor-promoting expression profiles. There were marked differences between the models as well, with Mφ in NASH-HCC exhibiting a more immunomodulatory phenotype, in conjunction with an upregulation of lipid metabolism genes. Our data show that at least some infiltrated macrophages display expression of pro-tumoral markers, and that Kupffer cells are part of the population of TAMs and enhance tumor progression. These insights are useful to further unravel sequential pathogenic events during hepatocarcinogenesis and direct future development of new treatment strategies for HCC.
Collapse
|
20
|
Devisscher L, Van Campenhout S, Lefere S, Raevens S, Tilleman L, Van Nieuwerburgh F, Van Eeckhoutte HP, Hoorens A, Lynes MA, Geerts A, Laukens D, Van Vlierberghe H. Metallothioneins alter macrophage phenotype and represent novel therapeutic targets for acetaminophen-induced liver injury. J Leukoc Biol 2021; 111:123-133. [PMID: 33724533 DOI: 10.1002/jlb.3a0820-527r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen (APAP) intoxication is the foremost cause of drug-induced liver failure in developed countries. The only pharmacologic treatment option, N-acetylcysteine (NAC), is not effective for patients who are admitted too late and/or who have excessive liver damage, emphasizing the need for alternative treatment options. APAP intoxication results in hepatocyte death and release of danger signals, which further contribute to liver injury, in part by hepatic monocyte/macrophage infiltration and activation. Metallothionein (MT) 1 and 2 have important danger signaling functions and might represent novel therapeutic targets in APAP overdose. Therefore, we evaluated hepatic MT expression and the effect of anti-MT antibodies on the transcriptional profile of the hepatic macrophage population and liver injury following APAP overdose in mice. Hepatic MT expression was significantly induced in APAP-intoxicated mice and abundantly present in human livers. APAP intoxication in mice resulted in increased serum transaminase levels, extended necrotic regions on liver histology and induced expression of proinflammatory markers, which was significantly less pronounced in mice treated with anti-MT antibodies. Anti-MT antibody therapy attenuated proinflammatory macrophage polarization, as demonstrated by RNA sequencing analyses of isolated liver macrophages and in LPS-stimulated bone marrow-derived macrophages. Importantly, NAC and anti-MT antibodies were equally effective whereas administration of anti-MT antibody in combination with NAC exceeded the efficiency of both monotherapies in APAP-induced liver injury (AILI). We conclude that the neutralization of secreted MTs using a monoclonal antibody is a novel therapeutic strategy as mono- or add-on therapy for AILI. In addition, we provide evidence suggesting that MTs in the extracellular environment are involved in macrophage polarization.
Collapse
Affiliation(s)
- Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sanne Van Campenhout
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Hannelore P Van Eeckhoutte
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Anja Geerts
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Vanderborght B, De Muynck K, Lefere S, Geerts A, Degroote H, Verhelst X, Van Vlierberghe H, Devisscher L. Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget 2020; 11:4504-4520. [PMID: 33400730 PMCID: PMC7721613 DOI: 10.18632/oncotarget.27830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. For advanced HCC, there is still an unmet need for more effective therapeutic strategies. HCC is typically associated with hypoxia and the hypoxia-inducible factor (HIF) regulatory pathway plays an important role in HCC development and progression. Therefore, we investigated the therapeutic potential of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides (ASOs), along with their effect on the inflammatory and fibrotic component of the tumor microenvironment (TME), in an experimental HCC mouse model. Based on its efficacy and safety, a dosage regimen of 20 mg/kg intraperitoneal injection of HIFα ASO twice per week was selected for further investigation in a preventive and therapeutic setting in a N,N-diethylnitrous amide (DEN)-induced HCC mouse model. DEN administration resulted in 100% tumor formation and HIFα ASO administration led to effective and selective hepatic downregulation of its target genes. HIFα ASO treatment had no effect on tumor numbers, but even enhanced the increased hepatic expression of HCC tumor markers, α-fetoprotein and glypican-3, compared to scrambled control ASO treatment in HCC mice. Especially HIF-1α ASO treatment resulted in an enhanced increase of monocytes and monocyte-derived macrophages in the liver and an enhanced hepatic upregulation of inflammatory markers. Both HIFα ASOs aggravated liver fibrosis in HCC mice compared to scrambled ASO treatment. The observed effects of our dosing regimen for HIF-1α and HIF-2α ASO treatment in the DEN-induced HCC mouse model discourage the use of HIFα isoforms as targets for the treatment of HCC.
Collapse
Affiliation(s)
- Bart Vanderborght
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Kevin De Muynck
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Lefere S, Puengel T, Hundertmark J, Penners C, Frank AK, Guillot A, de Muynck K, Heymann F, Adarbes V, Defrêne E, Estivalet C, Geerts A, Devisscher L, Wettstein G, Tacke F. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages ☆. J Hepatol 2020; 73:757-770. [PMID: 32360434 DOI: 10.1016/j.jhep.2020.04.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Peroxisome proliferator-activated receptors (PPARs) are essential regulators of whole-body metabolism, but also modulate inflammation in immune cells, notably macrophages. We compared the effects of selective PPAR agonists to those of the pan-PPAR agonist lanifibranor in non-alcoholic fatty liver disease (NAFLD), and studied isoform-specific effects on hepatic macrophage biology. METHODS Lanifibranor or selective PPARα (fenofibrate), PPARγ (pioglitazone) and PPARδ (GW501516) agonists were therapeutically administered in choline-deficient, amino acid-defined high-fat diet (CDAA-HFD)- and Western diet (WD)-fed mouse models of NAFLD. Acute liver injury was induced by carbon tetrachloride (CCl4). The role of PPARs on macrophage functionality was studied in isolated hepatic macrophages, bone marrow-derived macrophages stimulated with palmitic acid, and circulating monocytes from patients with NAFLD. RESULTS Lanifibranor improved all histological features of steatohepatitis in CDAA-HFD-fed mice, including liver fibrosis, thereby combining and exceeding specific effects of the single PPAR agonists. Its potent anti-steatotic efficacy was confirmed in a 3D liver biochip model with primary cells. Infiltrating hepatic monocyte-derived macrophages were reduced following PPAR agonist administration, especially with lanifibranor, even after short-term treatment, paralleling improved steatosis and hepatitis. Lanifibranor similarly decreased steatosis, liver injury and monocyte infiltration in the WD model. In the acute CCl4 model, neither single nor pan-PPAR agonists directly affected monocyte recruitment. Hepatic macrophages isolated from WD-fed mice displayed a metabolically activated phenotype. Lanifibranor attenuated the accompanying inflammatory activation in both murine palmitic acid-stimulated bone marrow-derived macrophages, as well as patient-derived circulating monocytes, in a PPARδ-dependent fashion. CONCLUSION Pan-PPAR agonists combine the beneficial effects of selective PPAR agonists and may counteract inflammation and disease progression more potently. PPARδ agonism and lanifibranor directly modulate macrophage activation, but not infiltration, thereby synergizing with beneficial metabolic effects of PPARα/γ agonists. LAY SUMMARY Peroxisome proliferated-activated receptors (PPARs) are essential regulators of metabolism and inflammation. We demonstrated that the pan-PPAR agonist lanifibranor ameliorated all aspects of non-alcoholic fatty liver disease in independent experimental mouse models. Non-alcoholic fatty liver disease and fatty acids induce a specific polarization status in macrophages, which was altered by lanifibranor to increase expression of lipid handling genes, thereby decreasing inflammation. PPAR isoforms have differential therapeutic effects on fat-laden hepatocytes, activated hepatic stellate cells and inflammatory macrophages, supporting the clinical development of pan-PPAR agonists.
Collapse
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium; Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Tobias Puengel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Jana Hundertmark
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christian Penners
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Kevin de Muynck
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Felix Heymann
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | - Anja Geerts
- Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Van Campenhout S, Tilleman L, Lefere S, Vandierendonck A, Raevens S, Verhelst X, Geerts A, Van Nieuwerburgh F, Van Vlierberghe H, Devisscher L. Myeloid-specific IRE1alpha deletion reduces tumour development in a diabetic, non-alcoholic steatohepatitis-induced hepatocellular carcinoma mouse model. Metabolism 2020; 107:154220. [PMID: 32243868 DOI: 10.1016/j.metabol.2020.154220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Obesity, diabetes and associated non-alcoholic steatohepatitis (NASH) are rising risk factors for hepatocellular carcinoma (HCC). Macrophages are important immune cells involved in inflammation and tumour development. Macrophage inositol-requiring enzyme 1 alpha (IRE1α), an ER-stress protein, has been shown to be involved in macrophage cytokine production, and myeloid-specific IRE1α knock-out (myeloid IRE1α-KO) mice showed reduced weight gain during high-fat diet feeding. However, the effect of myeloid IRE1α on NASH and subsequent HCC development has not been examined. Here, we characterized the transcriptional profile of the hepatic macrophage population in a diabetes-NASH-HCC mouse model, and investigated the effect of myeloid-specific IRE1α deletion on the phenotype of hepatic macrophage subsets and experimental NASH-HCC development. METHODS Mice with non-functional myeloid IRE1α were created by crossing Ire1a floxed mice with Lysm-Cre mice. Two-day old myeloid IRE1α-KO and wild type (WT) mice were subcutaneously injected with streptozotocin (STZ), and male mice were fed a high-fat, -sucrose, -cholesterol diet (Western diet, WD) from the age of 4 weeks until 21 weeks. Control myeloid IRE1α-KO and WT mice received a PBS injection and were fed a matched control diet. These mice were evaluated for obesity, diabetes, NASH and HCC. The hepatic macrophage population was evaluated by flow cytometry and RNA sequencing on FACS-isolated macrophage subsets. RESULTS STZ-injection and WD feeding resulted in an impaired glucose tolerance, advanced NASH with fibrosis, and HCC development. Myeloid IRE1α-KO STZ mice showed lower fasting glucose levels at the start of WD feeding, and an improved glucose tolerance and attenuated HCC development after 17 weeks of WD feeding despite a similar degree of liver steatosis and inflammation compared to WT mice. Transcriptomic analysis of WT liver Kupffer cells, macrophages and monocytes revealed phenotypical changes in those cell subsets during NASH-HCC development. Isolated liver Kupffer cells and macrophages from mice with a myeloid IRE1α deletion showed downregulated pathways involved in immune system activation and metabolic pathways (only in Kupffer cells), whereas pathways involved in cell division and metabolism were upregulated in monocytes. These transcriptional differences were attenuated during NASH-HCC development. CONCLUSION Our results show that myeloid-specific IRE1α deletion results in an altered transcriptional profile of hepatic macrophages and dampens diabetes-induced NASH-HCC development, possibly by attenuated diabetes induction.
Collapse
Affiliation(s)
- Sanne Van Campenhout
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium; Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 3, 9000 Ghent, Belgium.
| | - Laurentijn Tilleman
- Lab of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Astrid Vandierendonck
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Sarah Raevens
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Filip Van Nieuwerburgh
- Lab of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 2, 9000 Ghent, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 36 - Floor 3, 9000 Ghent, Belgium.
| |
Collapse
|
25
|
Ni Y, Zhuge F, Nagashimada M, Nagata N, Xu L, Yamamoto S, Fuke N, Ushida Y, Suganuma H, Kaneko S, Ota T. Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radic Biol Med 2020; 152:571-582. [PMID: 31790829 DOI: 10.1016/j.freeradbiomed.2019.11.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid uptake-induced oxidative stress causes liver injury and the consecutive recruitment of inflammatory immune cells, thereby promoting the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Lycopene, the most effective singlet oxygen scavenger of the antioxidant carotenoids, has anti-inflammatory activity. Here, we investigated the preventive and therapeutic effects of lycopene in a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet. Lycopene alleviated excessive hepatic lipid accumulation and enhanced lipolysis, decreased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis, and subsequently reduced the recruitment of CD4+ and CD8+ T cells in the liver. Importantly, lycopene reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. In parallel, lycopene decreased LPS-/IFN-γ-/TNFα-induced M1 marker mRNA levels in peritoneal macrophages, as well as TGF-β1-induced expression of fibrogenic genes in a stellate cell line, in a dose-dependent manner. These results were associated with decreased oxidative stress in cells, which might be mediated by the expression of NADPH oxidase subunits. In summary, lycopene prevented and reversed lipotoxicity-induced inflammation and fibrosis in NASH mice by reducing oxidative stress. Therefore, it might be a novel and promising treatment for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Mayumi Nagashimada
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Health Science, Graduate of Medical Science, Kanazawa University, Kanazawa, 920-0942, Japan
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Liang Xu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sayo Yamamoto
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Nobuo Fuke
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | | | - Shuichi Kaneko
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| |
Collapse
|
26
|
van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunol 2019; 10:2852. [PMID: 31849997 PMCID: PMC6901832 DOI: 10.3389/fimmu.2019.02852] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophages play a central role in maintaining homeostasis in the liver, as well as in the initiation and progression of liver diseases. Hepatic macrophages are mainly derived from resident hepatic macrophages called Kupffer cells or circulating bone marrow-derived monocytes. Kupffer cells are self-renewing and typically non-migrating macrophages in the liver and are stationed in the liver sinusoids in contrast to macrophages originating from circulating monocytes. Kupffer cells regulate liver homeostasis by mediating immunity against non-pathogenic blood-borne molecules, while participating in coordinated immune responses leading to pathogen clearance, leukocyte recruitment and antigen presentation to lymphocytes present in the vasculature. Monocyte-derived macrophages infiltrate into the liver tissue when metabolic or toxic damage instigates and are likely dispensable for replenishing the macrophage population in homeostasis. In recent years, different populations of hepatic macrophages have been identified with distinct phenotypes with discrete functions, far beyond the central dogma of M1 and M2 macrophages. Hepatic macrophages play a central role in the pathogenesis of acute and chronic liver failure, liver fibrosis, non-alcoholic fatty liver disease, alcoholic liver disease, viral hepatitis, and hepatocellular carcinoma, as well as in disease resolution. The understanding of the role of hepatic macrophages in liver diseases provides opportunities for the development of targeted therapeutics for respective malignancies. This review will summarize the current knowledge of the hepatic macrophages, their origin, functions, their critical role in maintaining homeostasis and in the progression or resolution of liver diseases. Furthermore, we will provide a comprehensive overview of the therapeutic targeting strategies against hepatic macrophages developed for the treatment of liver diseases.
Collapse
Affiliation(s)
- Daphne van der Heide
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| |
Collapse
|
27
|
Borst K, Graalmann T, Kalinke U. Reply to: "Unveiling the depletion of Kupffer cells in experimental hepatocarcinogenesis through liver macrophage subtype-specific markers". J Hepatol 2019; 71:633-635. [PMID: 31227257 DOI: 10.1016/j.jhep.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022]
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany; Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany.
| |
Collapse
|