1
|
Liu K, Li L, He Y, Zhang S, You H, Wang P. Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice. Stem Cell Res Ther 2025; 16:131. [PMID: 40069754 PMCID: PMC11899129 DOI: 10.1186/s13287-025-04253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Wilson's disease (WD) is a genetic disorder that impairs the excretion of copper in hepatocytes and results in excessive copper deposition in multiple organs. The replacement of disordered hepatocytes with functional hepatocytes can serve as a lifelong therapeutic strategy for the treatment of WD. The aim of this study was to determine the hepatocyte repopulation effects of fibroblast-derived hepatic progenitor cells in the treatment of WD. METHODS Induced hepatic progenitor cells (iHPCs) were generated through direct reprogramming of adult mouse fibroblasts infected with lentivirus carrying both the Foxa3 and Hnf4α genes. These iHPCs were subsequently identified and transplanted into copper-overload WD mice with the Atp7b (H1071Q) mutation via caudal vein injection. RESULTS After lentivirus infection, the fibroblasts transformed into Foxa3- and Hnf4α-overexpressing cobblestone-like cells with reduced expression of fibroblast markers and increased expression of epithelial cell and hepatic progenitor cell markers, i.e., iHPCs. Sixteen weeks after transplantation into WD mice, approximately 2% of hepatocytes were derived from iHPCs, and these iHPC-derived hepatocytes expressed a tight junction-associated protein of the bile canal, tight junction protein 1 (Zo1). There was a decrease in the serum copper concentration and relative activity of serum ceruloplasmin at weeks 4 and 8 after iHPCs transplantation compared with those of WD fed mice administered saline or fibroblasts. Furthermore, iHPC transplantation markedly reduced the proportion of CD8+ T lymphocytes and natural killer cells compared with those in fibroblast-transplanted WD mice and downregulated the transcription of the inflammatory cytokines, including tumor necrosis factor α (Tnfα), interleukin 1β (IL-1β), and IL-6, compared with those in WD mice and in fibroblast-transplanted WD mice. CONCLUSION iHPCs reprogrammed from adult fibroblasts can repopulate hepatocytes and exert therapeutic effects in WD mice, representing a potential replacement therapy for clinical application.
Collapse
Affiliation(s)
- Kai Liu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China.
- Beijing Clinical Research Institute, Beijing, 100050, China.
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| |
Collapse
|
2
|
Shi H, Ding Y, Sun P, Lv Z, Wang C, Ma H, Lu J, Yu B, Li W, Wang C. Chemical approaches targeting the hurdles of hepatocyte transplantation: mechanisms, applications, and advances. Front Cell Dev Biol 2024; 12:1480226. [PMID: 39544361 PMCID: PMC11560891 DOI: 10.3389/fcell.2024.1480226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocyte transplantation (HTx) has been a novel cell-based therapy for severe liver diseases, as the donor livers for orthotopic liver transplantation are of great shortage. However, HTx has been confronted with two main hurdles: limited high-quality hepatocyte sources and low cell engraftment and repopulation rate. To cope with, researchers have investigated on various strategies, including small molecule drugs with unique advantages. Small molecules are promising chemical tools to modulate cell fate and function for generating high quality hepatocyte sources. In addition, endothelial barrier, immune responses, and low proliferative efficiency of donor hepatocytes mainly contributes to low cell engraftment and repopulation rate. Interfering these biological processes with small molecules is beneficial for improving cell engraftment and repopulation. In this review, we will discuss the applications and advances of small molecules in modulating cell differentiation and reprogramming for hepatocyte resources and in improving cell engraftment and repopulation as well as its underlying mechanisms.
Collapse
Affiliation(s)
- Huanxiao Shi
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Yi Ding
- Experimental Teaching Center, Naval Medical University, Shanghai, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Nieto-Romero V, García-Torralba A, Molinos-Vicente A, Moya FJ, Rodríguez-Perales S, García-Escudero R, Salido E, Segovia JC, García-Bravo M. Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience 2024; 27:109530. [PMID: 38577102 PMCID: PMC10993186 DOI: 10.1016/j.isci.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.
Collapse
Affiliation(s)
- Virginia Nieto-Romero
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Aida García-Torralba
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco José Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)-ISCIII, Research Institute Hospital 12 de Octubre (imas12)-University Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Eduardo Salido
- Pathology Department, Hospital Universitario de Canarias, Universidad La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 38320 Tenerife, Spain
| | - José-Carlos Segovia
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
5
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
6
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
7
|
Gouon-Evans V, Fiorotto R. Fibroblasts to hepatocytes: A nonstop flight into cell therapy for liver diseases? Hepatology 2023; 77:1469-1471. [PMID: 35957526 DOI: 10.1002/hep.32725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine , Boston University School of Medicine and Boston Medical Center , Boston , Massachusetts , USA
| | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases , Yale Liver Center, Yale School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
8
|
Garcia-Llorens G, Martínez-Sena T, Pareja E, Tolosa L, Castell JV, Bort R. A robust reprogramming strategy for generating hepatocyte-like cells usable in pharmaco-toxicological studies. Stem Cell Res Ther 2023; 14:94. [PMID: 37072803 PMCID: PMC10114490 DOI: 10.1186/s13287-023-03311-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.
Collapse
Affiliation(s)
- Guillem Garcia-Llorens
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-Bbn), Instituto de Salud Carlos III, Madrid, Spain
| | - José V Castell
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Roque Bort
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Takashina T, Matsunaga A, Shimizu Y, Sakuma T, Okamura T, Matsuoka K, Yamamoto T, Ishizaka Y. Robust protein-based engineering of hepatocyte-like cells from human mesenchymal stem cells. Hepatol Commun 2023; 7:e0051. [PMID: 36848084 PMCID: PMC9974069 DOI: 10.1097/hc9.0000000000000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Cells of interest can be prepared from somatic cells by forced expression of lineage-specific transcription factors, but it is required to establish a vector-free system for their clinical use. Here, we report a protein-based artificial transcription system for engineering hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells (MSCs). METHODS MSCs were treated for 5 days with 4 artificial transcription factors (4F), which targeted hepatocyte nuclear factor (HNF)1α, HNF3γ, HNF4α, and GATA-binding protein 4 (GATA4). Then, engineered MSCs (4F-Heps) were subjected to epigenetic analysis, biochemical analysis and flow cytometry analysis with antibodies to marker proteins of mature hepatocytes and hepatic progenitors such as delta-like homolog 1 (DLK1) and trophoblast cell surface antigen 2 (TROP2). Functional properties of the cells were also examined by injecting them to mice with lethal hepatic failure. RESULTS Epigenetic analysis revealed that a 5-day treatment of 4F upregulated the expression of genes involved in hepatic differentiation, and repressed genes related to pluripotency of MSCs. Flow cytometry analysis detected that 4F-Heps were composed of small numbers of mature hepatocytes (at most 1%), bile duct cells (~19%) and hepatic progenitors (~50%). Interestingly, ~20% of 4F-Heps were positive for cytochrome P450 3A4, 80% of which were DLK1-positive. Injection of 4F-Heps significantly increased survival of mice with lethal hepatic failure, and transplanted 4F-Heps expanded to more than 50-fold of human albumin-positive cells in the mouse livers, well consistent with the observation that 4F-Heps contained DLK1-positive and/or TROP2-positive cells. CONCLUSION Taken together with observations that 4F-Heps were not tumorigenic in immunocompromised mice for at least 2 years, we propose that this artificial transcription system is a versatile tool for cell therapy for hepatic failures.
Collapse
Affiliation(s)
- Tomoki Takashina
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunie Matsuoka
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
10
|
IL6 supports long-term expansion of hepatocytes in vitro. Nat Commun 2022; 13:7345. [PMID: 36446858 PMCID: PMC9708838 DOI: 10.1038/s41467-022-35167-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.
Collapse
|
11
|
Tomaz RA, Zacharis ED, Bachinger F, Wurmser A, Yamamoto D, Petrus-Reurer S, Morell CM, Dziedzicka D, Wesley BT, Geti I, Segeritz CP, de Brito MC, Chhatriwala M, Ortmann D, Saeb-Parsy K, Vallier L. Generation of functional hepatocytes by forward programming with nuclear receptors. eLife 2022; 11:71591. [PMID: 35959725 PMCID: PMC9374437 DOI: 10.7554/elife.71591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Production of large quantities of hepatocytes remains a major challenge for a number of clinical applications in the biomedical field. Directed differentiation of human pluripotent stem cells (hPSCs) into hepatocyte-like cells (HLCs) provides an advantageous solution and a number of protocols have been developed for this purpose. However, these methods usually follow different steps of liver development in vitro, which is time consuming and requires complex culture conditions. In addition, HLCs lack the full repertoire of functionalities characterising primary hepatocytes. Here, we explore the interest of forward programming to generate hepatocytes from hPSCs and to bypass these limitations. This approach relies on the overexpression of three hepatocyte nuclear factors (HNF1A, HNF6, and FOXA3) in combination with different nuclear receptors expressed in the adult liver using the OPTi-OX platform. Forward programming allows for the rapid production of hepatocytes (FoP-Heps) with functional characteristics using a simplified process. We also uncovered that the overexpression of nuclear receptors such as RORc can enhance specific functionalities of FoP-Heps thereby validating its role in lipid/glucose metabolism. Together, our results show that forward programming could offer a versatile alternative to direct differentiation for generating hepatocytes in vitro.
Collapse
Affiliation(s)
- Rute A Tomaz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ekaterini D Zacharis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Fabian Bachinger
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Annabelle Wurmser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Daniel Yamamoto
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Carola M Morell
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Dominika Dziedzicka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Brandon T Wesley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Imbisaat Geti
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Charis-Patricia Segeritz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Miguel C de Brito
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mariya Chhatriwala
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Daniel Ortmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
12
|
Alexanian AR. Combination of the modulators of epigenetic machinery and specific cell signaling pathways as a promising approach for cell reprogramming. Mol Cell Biochem 2022; 477:2309-2317. [PMID: 35503191 DOI: 10.1007/s11010-022-04442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
During embryogenesis and further development, mammalian epigenome undergoes global remodeling, which leads to the emergence of multiple fate-restricted cell lines as well as to their further differentiation into different specialized cell types. There are multiple lines of evidence suggesting that all these processes are mainly controlled by epigenetic mechanisms such as DNA methylation, histone covalent modifications, and the regulation of ATP-dependent remolding of chromatin structure. Based on the histone code hypothesis, distinct chromatin covalent modifications can lead to functionally distinct chromatin structures and thus distinctive gene expression that determine the fate of the cells. A large amount of recently accumulated data showed that small molecule biologically active compounds that involved in the regulation of chromatin structure and function in discriminative signaling environments can promote changes in cells fate. These data suggest that agents that involved in the regulation of chromatin modifying enzymes combined with factors that modulate specific cell signaling pathways could be effective tools for cell reprogramming. The goal of this review is to gather the most relevant and most recent literature that supports this proposition.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, 10437 Innovation drive, Suite 321, Wauwatosa, WI, 53226, USA.
| |
Collapse
|
13
|
Ji SF, Zhou LX, Sun ZF, Xiang JB, Cui SY, Li Y, Chen HT, Liu YQ, Gao HH, Fu XB, Sun XY. Small molecules facilitate single factor-mediated sweat gland cell reprogramming. Mil Med Res 2022; 9:13. [PMID: 35351192 PMCID: PMC8962256 DOI: 10.1186/s40779-022-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Large skin defects severely disrupt the overall skin structure and can irreversibly damage sweat glands (SG), thus impairing the skin's physiological function. This study aims to develop a stepwise reprogramming strategy to convert fibroblasts into SG lineages, which may provide a promising method to obtain desirable cell types for the functional repair and regeneration of damaged skin. METHODS The expression of the SG markers cytokeratin 5 (CK5), cytokeratin 10 (CK10), cytokeratin 18 (CK18), carcino-embryonic antigen (CEA), aquaporin 5 (AQP5) and α-smooth muscle actin (α-SMA) was assessed with quantitative PCR (qPCR), immunofluorescence and flow cytometry. Calcium activity analysis was conducted to test the function of induced SG-like cells (iSGCs). Mouse xenograft models were also used to evaluate the in vivo regeneration of iSGCs. BALB/c nude mice were randomly divided into a normal group, SGM treatment group and iSGC transplantation group. Immunocytochemical analyses and starch-iodine sweat tests were used to confirm the in vivo regeneration of iSGCs. RESULTS EDA overexpression drove HDF conversion into iSGCs in SG culture medium (SGM). qPCR indicated significantly increased mRNA levels of the SG markers CK5, CK18 and CEA in iSGCs, and flow cytometry data demonstrated (4.18 ± 0.04)% of iSGCs were CK5 positive and (4.36 ± 0.25)% of iSGCs were CK18 positive. The addition of chemical cocktails greatly accelerated the SG fate program. qPCR results revealed significantly increased mRNA expression of CK5, CK18 and CEA in iSGCs, as well as activation of the duct marker CK10 and luminal functional marker AQP5. Flow cytometry indicated, after the treatment of chemical cocktails, (23.05 ± 2.49)% of iSGCs expressed CK5+ and (55.79 ± 3.18)% of iSGCs expressed CK18+, respectively. Calcium activity analysis indicated that the reactivity of iSGCs to acetylcholine was close to that of primary SG cells [(60.79 ± 7.71)% vs. (70.59 ± 0.34)%, ns]. In vivo transplantation experiments showed approximately (5.2 ± 1.1)% of the mice were sweat test positive, and the histological analysis results indicated that regenerated SG structures were present in iSGCs-treated mice. CONCLUSION We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using the single factor EDA in combination with SGM and small molecules. The generation of iSGCs has important implications for future in situ skin regeneration with SG restoration.
Collapse
Affiliation(s)
- Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Lai-Xian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhi-Feng Sun
- Department of Respiratory, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100036, China
| | - Jiang-Bing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.,Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Shao-Yuan Cui
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, 100048, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Hua-Ting Chen
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Yi-Qiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Huan-Huan Gao
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
14
|
Gatzios A, Rombaut M, Buyl K, De Kock J, Rodrigues RM, Rogiers V, Vanhaecke T, Boeckmans J. From NAFLD to MAFLD: Aligning Translational In Vitro Research to Clinical Insights. Biomedicines 2022; 10:biomedicines10010161. [PMID: 35052840 PMCID: PMC8773802 DOI: 10.3390/biomedicines10010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although most same-stage non-alcoholic fatty liver disease (NAFLD) patients exhibit similar histologic sequelae, the underlying mechanisms appear to be highly heterogeneous. Therefore, it was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. As human-based in vitro research fulfils an irrefutable step in drug development, action should be taken as well in this stadium of the translational path. Indeed, most established in vitro NAFLD models rely on short-term exposure to fatty acids and use lipid accumulation as a phenotypic benchmark. This general approach to a seemingly ambiguous disease such as NAFLD therefore no longer seems applicable. Human-based in vitro models that accurately reflect distinct disease subgroups of MAFLD should thus be adopted in early preclinical disease modeling and drug testing. In this review article, we outline considerations for setting up translational in vitro experiments in the MAFLD era and allude to potential strategies to implement MAFLD heterogeneity into an in vitro setting so as to better align early drug development with future clinical trial designs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joost Boeckmans
- Correspondence: (A.G.); (J.B.); Tel.: +32-(0)-2-477-45-94 (A.G.)
| |
Collapse
|
15
|
Abstract
Hepatocytes are liver parenchymal cells involved in performing various metabolic reactions. During the development of therapeutic drugs, toxicological assays are conducted using hepatocyte cultures before clinical trials. However, since primary hepatocytes cannot proliferate and rapidly lose their functions in vitro, many efforts have been put into modifying culture conditions to expand primary hepatocytes and induce hepatocyte functions in intrinsic and extrinsic stem/progenitor cells. In this chapter, we summarize recent advances in preparing hepatocyte cultures and induction of hepatocytes from various cellular sources.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|