1
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
2
|
Ye X, Fang X, Li F, Jin D. Targeting TIME in advanced hepatocellular carcinoma: Mechanisms of drug resistance and treatment strategies. Crit Rev Oncol Hematol 2025; 211:104735. [PMID: 40250780 DOI: 10.1016/j.critrevonc.2025.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer. While early-stage HCC can be effectively managed with surgical resection and other interventions, treatment options for advanced HCC are limited. Current systemic treatments for advanced HCC include VEGF-targeted tyrosine kinase inhibitors (Sorafenib, Lenvatinib), and the combination therapy of anti PD-1/PD-L1 and anti VEGF (Atezolizumab plus Bevacizumab, Camrelizumab plus Rivoceranib). However, the lack of response to these drugs and the emergence of acquired drug resistance significantly impairs their efficacy. Numerous studies have demonstrated that the tumor immune microenvironment (TIME) plays a crucial role in modulating the response to these therapies. Various immune cells and their secreted factors within the TIME play a pivotal role in the emergence of secondary drug resistance in HCC. This article reviews the mechanism of TIME promoting drug resistance, discusses the influence of current systemic HCC treatment drugs on TIME, and evaluates how these TIME changes affect the efficacy of treatment. A deeper understanding of the interaction between TIME and systemic treatment drugs may be beneficial to enhance the treatment effect, mitigate drug resistance of advanced HCC, and ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Xinyi Ye
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Xizhu Fang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| | - Dan Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 13002, China.
| |
Collapse
|
3
|
Luo P, Tang Y, Chen N, Liu P, Wang J, Fan Y, Liu H, Wang K. USP21 is involved in the development of chronic hepatitis B by modulating the immune microenvironment. Eur J Med Res 2025; 30:259. [PMID: 40205504 PMCID: PMC11980114 DOI: 10.1186/s40001-025-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health challenge that alters the immune microenvironment of the liver and drives disease progression by triggering chronic inflammation that leads to hepatic cell death through multiple programmed cell death (PCD) modalities. Due to the persistence of covalently closed circular DNA in hepatocytes, there is a lack of curative drugs that can completely eradicate HBV. Therefore, revealing how HBV infection leads to changes in the hepatic immune microenvironment, as well as searching for specific molecular targets, is crucial for controlling the onset and progression of chronic hepatitis B (CHB). In this study, we used the single sample gene set enrichment analysis and CIBERSORT algorithms to assess immune cell infiltration in the livers of CHB patients. With three advanced machine learning algorithms, random forest, least absolute shrinkage and selection operator, and selected support vector machine recursive feature elimination, we identified the PCD signature genes associated with CHB from the candidate genes. We further validated that ubiquitin-specific peptidase 21 could differentiate CHB patients with different natural courses by receiver operating characteristic analysis. These findings enhance our understanding of the mechanisms of HBV infection.
Collapse
Affiliation(s)
- Pengyu Luo
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
| | - Yuna Tang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
| | - Nan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
| | - Pei Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
| | - Jing Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China
- Hepatology Institute of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Huihui Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, People's Republic of China.
- Hepatology Institute of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [PMID: 40248063 PMCID: PMC12001165 DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis. AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis. METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses. RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential. CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
5
|
Jiang X, Ge X, Huang Y, Xie F, Chen C, Wang Z, Tao W, Zeng S, Lv L, Zhan Y, Bao L. Drug resistance in TKI therapy for hepatocellular carcinoma: Mechanisms and strategies. Cancer Lett 2025; 613:217472. [PMID: 39832650 DOI: 10.1016/j.canlet.2025.217472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) are such as sorafenib the first-line therapeutic drugs for patients with advanced hepatocellular carcinoma. However, patients with TKI-resistant advanced liver cancer are insensitive to TKI treatment, resulting in limited survival benefits. This paper comprehensively reviewed the mechanisms underlying TKI resistance in hepatocytes, investigating activation of tumor signaling pathways, epigenetic regulation, tumor microenvironment, and metabolic reprogramming. Based on resistance mechanisms, it also reviews preclinical and clinical studies of drug resistance strategies and summarizes targeted therapy combined with immunotherapy currently in investigational clinical trials. Understanding the interactions and clinical studies of these resistance mechanisms offers new hope for improving and prolonging patient survival.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Xiaoying Ge
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yueying Huang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Chun Chen
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Zijun Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Wanru Tao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Sailiang Zeng
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| |
Collapse
|
6
|
Muhammed TM, Jasim SA, Zwamel AH, Rab SO, Ballal S, Singh A, Nanda A, Ray S, Hjazi A, Yasin HA. T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04035-9. [PMID: 40100377 DOI: 10.1007/s00210-025-04035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The primary therapies for HCC are liver transplantation, hepatic tumor excision, radiofrequency ablation, and molecular-targeted medicines. An unfavorable prognosis marks HCC and has limited pharmacological response in therapeutic studies. The tumor immune microenvironment (TME) imposes significant selection pressure on HCC, resulting in its evolution and recurrence after various treatments. As the principal cellular constituents of tumor-infiltrating lymphocytes (TILs), T cells have shown both anti-tumor and protumor actions in HCC. T cell-mediated immune responses are pivotal in cancer monitoring and elimination. TILs are recognized for their critical involvement in the progression, prognosis, and immunotherapeutic management of HCC. Foxp3 + , CD8 + , CD3 + , and CD4 + T cells are the extensively researched subtypes of TILs. This article examines the functions and processes of several subtypes of TILs in HCC. Emerging T cell-based therapies, including TILs and chimeric antigen receptor (CAR)-T cell therapy, have shown tumor regression in several clinical and preclinical studies. Herein, it also delves into the existing T cell-based immunotherapies in HCC, with emphasis on TILs and CAR-T cells.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Biology Department, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
7
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
8
|
Zhang YZ, Ma Y, Ma E, Chen X, Zhang Y, Yin B, Zhao J. Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:10. [PMID: 40051497 PMCID: PMC11883234 DOI: 10.20517/cdr.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Yunshu Ma
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Ensi Ma
- Liver Transplantation Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Xizhi Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Baobing Yin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Jing Zhao
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
- Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| |
Collapse
|
9
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2025; 68:381-396. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
10
|
Du T, Zou J, Yang Y, Xie H, Pang H, Zhuang W, Wang S, Wei G. CA19-9-related macrophage polarization drives poor prognosis in HCC after immune checkpoint inhibitor treatment. Front Oncol 2025; 14:1528138. [PMID: 39868376 PMCID: PMC11757246 DOI: 10.3389/fonc.2024.1528138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Elevated levels of carbohydrate antigen 19-9 (CA19-9) levels are known to worsen outcomes in various tumors by influencing immune responses. However, the role of CA19-9 in immunotherapy for hepatocellular carcinoma (HCC) remains poorly understood. Methods This study included 621 patients treated with anti-PD-1/PD-L1 treatment at the First Affiliated Hospital of Sun Yat-sen University from January 2017 to March 2023. During immunotherapy, CA19-9 levels were measured and classified as either elevated (≥35 U/mL) or normal (<35 U/mL) for clinical analysis. Results Patients with elevated CA19-9 levels had significantly worse progression-free survival (PFS) and overall survival (OS). The 1-year and 2-year PFS rates were 53.3% and 29.1% in the normal CA19-9 group compared to 16.9% and 11.3% in the elevated group (p < 0.001). Similarly, the 1-year and 2-year OS rates were 90.5% and 75.5% in the normal group versus 64.0% and 36.5% in the elevated group (p < 0.001). Multivariate analysis confirmed CA19-9 was an independent prognostic factor for both PFS and OS. Bioinformatic analysis indicated that FUT3, a key gene in CA19-9 synthesis, correlated with increased macrophage infiltration. And increased M2 macrophage levels and reduced M1 macrophage levels were noted in HCC samples with elevated CA19-9 levels. Further in vivo experiments indicated blocking CA19-9 improved the efficacy of PD-1 treatment through inducing the M1-like polarization of macrophages. Conclusions Our findings demonstrate that elevated CA19-9 levels during immunotherapy are associated with poor survival outcomes in HCC patients. These findings highlight the crucial role of CA19-9 in shaping the tumor immune environment, particularly through its effect on macrophage polarization, and suggest that targeting CA19-9 may improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Tingting Du
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialin Zou
- Department of Anorectal Surgery, Shenzhen Longgang Central Hospital, Shenzhen, China
| | - Yunying Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghui Xie
- Department of Gynecology, Lingshan County People’s Hospital, Qinzhou, China
| | - Hui Pang
- Management Evaluation Section, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shutong Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
12
|
Fan F, Dong G, Han C, Luo Y, Li X, Dong X, Wang Z, Liang P, Yu J. Circulating Immune Features Synergizing Neutrophil-to-Lymphocyte Ratio in Prediction of Poor Survival of Early-Stage Hepatocellular Carcinoma After Thermal Ablation. Technol Cancer Res Treat 2025; 24:15330338241309402. [PMID: 40079761 PMCID: PMC11907606 DOI: 10.1177/15330338241309402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Background and AimPredictors of neutrophil-to-lymphocyte ratio (NLR) and traditional clinical variables for hepatocellular carcinoma (HCC) prognosis after locoregional therapies were useful while exhibited modest prognostic performances. We dig out the potential of circulating immune features for HCC prognosis prediction.Methods244 patients with early-stage HCC who were treated with thermal ablation and performed the peripheral blood mononuclear cells (PBMCs) tests were included. Patients were randomly assigned in 3:1 ratio to discovery (n = 183) and validation (n = 62) sets. Three models, including clinical (Clin-model), NLR-Clin-model and Immune-NLR-Clin-model were constructed using Cox regression model. Concordance index (c-index), integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were used for performance evaluation.ResultsThe Immune-NLR-Clin-model exhibited the best performance of 0.706 (95% CI:0.644-0.768) and 0.702 (95% CI:0.566-0.837) in discovery and validation sets, respectively. At 36-month prediction, the IDI and continuous-NRI show trend of improvement, with the IDI was 0.050 (95%CI: -0.5%-12.5%) (P < .0270) and the continuous-NRI was 0.147 (95%CI: -0.5%-36.6%) (P = .060) in discovery cohort. Treg, CD8+ and NLR from the immune-related combined model were selected to build TREND score. The median overall survival in TREND-low risk and high risk were 98.08 and 62.00 months, respectively (P < .0001). The discrimination ability approached significantly in validation set (P = .3200).ConclusionsCirculating immune features may be helpful components aiding NLR for HCC predictive models.
Collapse
Affiliation(s)
- Fangying Fan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoping Dong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanchun Luo
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuanjuan Dong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhen Wang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Jie Yu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| |
Collapse
|
13
|
Cui B, Xu C, Xu Y, Chen A, Mao C, Chen Y. [Causal relationship between ferroptosis-related gene HSPA5 and hepatocellular carcinoma: a study based on mendelian randomization and mediation analysis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:691-698. [PMID: 39532541 PMCID: PMC11736341 DOI: 10.3724/zdxbyxb-2024-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To explore a causal relationship between ferroptosis-related gene heat shock protein A5 (HSPA5) and hepatocellular carcinoma (HCC). METHODS A two-sample Mendelian randomization (MR) design was employed to evaluate the causal relationships among HSPA5, regulatory T cells (Tregs), and HCC. Single nucleotide polymorphisms (SNPs) associated with HSPA5, Tregs and HCC were selected as instrumental variables through publicly available genome-wide association studies (GWAS) databases. MR analysis was used to assess the direct effect of HSPA5 on HCC, followed by two-step MR to analyze the potential mediating role of Tregs. Reverse MR analysis was conducted with HCC as the exposure and HSPA5 as the outcome. Inverse variance weighting was the primary method for testing causal associations in all MR analyses. Robustness of the results was confirmed through MR-Egger, weighted median, weighted mode, and simple mode methods. Heterogeneity of instrumental variables was evaluated using Cochrane's Q statistic, while pleiotropy was tested by MR-Egger intercept and MR-PRESSO, with leave-one-out sensitivity analysis performed for robustness. Data from The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) were utilized to verify the expression levels of HSPA5 in HCC tissues and its correlation with Tregs to reveal the interaction mechanisms between HSPA5 and Tregs in HCC progression and their relationship with patient prognosis. RESULTS MR analysis showed a positive correlation between elevated HSPA5 expression and HCC risk (all P<0.01), while reverse MR analysis found no statistically significant association between HCC and HSPA5 (P>0.05). HSPA5 expression was significantly correlated with Tregs function (all P<0.05), and the enrichment of Tregs in HCC microenvironment was positively associated with HCC progression (all P<0.05). Mediation analysis indicated that Tregs accounted for 5.00% and 7.45% of the mediation effect between HSPA5 and HCC. TCGA and HPA database analysis revealed that both HSPA5 mRNA and protein expression levels were higher in HCC tissues compared to normal tissues, and high HSPA5 expression was significantly associated with poor prognosis. Immune infiltration analysis confirmed a significant positive correlation between HSPA5 and Tregs, with high Tregs infiltration closely related to HCC progression. CONCLUSIONS Elevated HSPA5 expression is significantly associated with HCC development and poor prognosis. HSPA5 may promote HCC progression by regulating the function of Tregs in the tumor microenvironment.
Collapse
Affiliation(s)
- Bing Cui
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| | - Yuan Xu
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Aqin Chen
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Chaoming Mao
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yuehua Chen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
14
|
Huang T, Li F, Wang Y, Gu J, Lu L. Tumor-infiltrating regulatory T cell: A promising therapeutic target in tumor microenvironment. Chin Med J (Engl) 2024; 137:2996-3009. [PMID: 39679474 PMCID: PMC11706582 DOI: 10.1097/cm9.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Regulatory T cell (Tregs) predominantly maintain the immune balance and prevent autoimmunity via their immunosuppressive functions. However, tumor-infiltrating Tregs (TI-Tregs) may mediate tumor immune tolerance in complex tumor microenvironments, resulting in poor prognosis. Distinguishing specific TI-Treg subpopulations from peripheral Tregs and intratumoral conventional T cells (Tconvs) has recently emerged as an important topic in antitumor therapy. In this review, we summarize novel therapeutic approaches targeting both the metabolic pathways and hallmarks of TI-Tregs in preclinical and clinical studies. Although the phenotypic and functional diversity of TI-Tregs remains unclear, our review provides new insights into TI-Treg-based therapies and facilitates precision medicine for tumor treatment.
Collapse
Affiliation(s)
- Tianning Huang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Fan Li
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Yiming Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Gu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Ling Lu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221011, China
| |
Collapse
|
15
|
Yang C, You J, Wang Y, Chen S, Tang Y, Chen H, Zhong H, Song R, Long H, Xiang T, Zhao ZR, Xia J. TLS and immune cell profiling: immunomodulatory effects of immunochemotherapy on tumor microenvironment in resectable stage III NSCLC. Front Immunol 2024; 15:1499731. [PMID: 39726591 PMCID: PMC11670196 DOI: 10.3389/fimmu.2024.1499731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy. This study aims to assess the relationship between immune cells subtypes and TLSs to better understand their impact on immunotherapy response. Methods This study initially compared the tertiary lymphoid structures (TLSs) density among patients who underwent immunochemotherapy, chemotherapy and upfront surgery using 123 tumor samples from stage-matched patients. Multiplex immunohistochemistry (mIHC) was employed to analyze the spatial distribution of PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs. Cytometry by time-of-flight (CyTOF) was used to assess immune cell dynamics in paired biopsy and resection specimens from six patients who underwent immunochemotherapy. Key immune cells were validated in newly collected samples using flow cytometry, mIHC, and in vitro CAR-T cells model. Results Patients who underwent neoadjuvant chemotherapy or immunochemotherapy exhibited increased TLSs compared to those who opted for upfront surgery. The TLS area-to-tumor area ratio distinguished pCR+MPR and NR patients in the immunochemotherapy group. Spatial analysis revealed variations in the distance between PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs in the immunochemotherapy group. CyTOF analysis revealed an increase in the frequency of key immune cells (CCR7+CD127+CD69+CD4+ and CD38+CD8+ cells) following combined therapy. Treatment responders exhibited an increase in CCR7+CD4+ T cells, whereas CD38+CD8+ T cells were associated with compromised treatment effectiveness. Conclusions Immunochemotherapy and chemotherapy increase TLSs and granzyme B+ CD8+ T cells in tumors. The TLS area-to-tumor ratio distinguishes responders from non-responders, with PD-L1+ dendritic cells near CD8+PD-1+ T cells linked to efficacy, suggesting that PD-1 inhibitors disrupt harmful interactions. Post-immunochemotherapy, CD8+ T cells increase, but CD38+CD8+ T cells show reduced functionality. These findings highlight the complex immune dynamics and their implications for NSCLC treatment.
Collapse
Affiliation(s)
- Chaopin Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinqi You
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yizhi Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Si Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haoran Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ruyue Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
17
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
18
|
Long Y, Wang W, Liu S, Wang X, Tao Y. The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2297-2316. [PMID: 39718737 DOI: 10.1007/s13402-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene. Finally, the biological function of this gene was preliminarily discussed by using single gene Gene Set Enrichment Analysis (GSEA), and the YEATS2 overexpression and knockdown hepatoma cell line was used to verify the results in vitro and in vivo. RESULTS Based on the clinical information of HCC in TCGA, GEO and ICGC databases, the gene YEATS2 with significant differences from HCC was identified. There was a statistical difference in the survival prognosis between the two databases and the ROC curve showed that the survival of HCC in both TCGA, GSE14520 and ICGC groups had a satisfactory predictive effect. Univariate and multivariate Cox regression analysis showed that YEATS2 was an independent prognostic factor for HCC, and Nomograms, which combined this prognostic feature with significant clinical features, provided an important reference for the clinical prognostic diagnosis of HCC. Next, we constructed overexpression and knockdown YEATS2 cell line in Hep3B and LM3 cells, and further proved that overexpression YEATS2 promote the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays, and knockdown YEATS2 inhibited the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays. Finally, the biological function of YEATS2 was preliminarily explored through GSEA analysis of a single gene, and it was found that it was significantly correlated with cell cycle and DNA repair, which provided us with ideas for further analysis. Furthermore, the knockdown of YEATS2 promoted radiation-induced DNA damage, enhanced radiosensitivity, and ultimately inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo. CONCLUSIONS Our study identified a promising prognostic marker for hepatocellular carcinoma that is useful for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Yao Long
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shouping Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
19
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
21
|
Liu Z, Yuan H, Wang Y, Li K, Suo C, Jin L, Ding C, Chen X. Proteogenomic Analysis Identifies a Causal Association between Plasma Apolipoprotein B Levels and Liver Cancer Risk. J Proteome Res 2024; 23:4055-4066. [PMID: 39091241 DOI: 10.1021/acs.jproteome.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Liver oncogenesis is accompanied by discernible protein changes in the bloodstream. By employing plasma proteomic profiling, we can delve into the molecular mechanisms of liver cancer and pinpoint potential biomarkers. In this nested case-control study, we applied liquid chromatography-tandem mass spectrometry for proteome profiling in baseline plasma samples. Differential protein expression was determined and was subjected to functional enrichment, network, and Mendelian randomization (MR) analyses. We identified 193 proteins with notable differential levels between the groups. Of these proteins, MR analysis offered a compelling negative association between apolipoprotein B (APOB) and liver cancer. This association was further corroborated in the UK Biobank cohort: genetically predicted APOB levels were associated with a 31% (95% CI 19-42%) decreased risk of liver cancer; and phenotypic analysis indicated an 11% (95% CI 8-14%) decreased liver cancer risk for every 0.1 g/L increase of circulating APOB levels. Multivariable MR analysis suggested that the hepatic fat content might fully mediate the APOB-liver cancer connection. In summary, we identified some plasma proteins, particularly APOB, as potential biomarkers of liver cancer. Our findings underscore the intricate link between lipid metabolism and liver cancer, offering hints for targeted prophylactic strategies and early detection.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou 225316, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou 225316, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chen Suo
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou 225316, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
23
|
Luo X, Huang W, Li S, Sun M, Hu D, Jiang J, Zhang Z, Wang Y, Wang Y, Zhang J, Wu Z, Ji X, Liu D, Chen X, Zhang B, Liang H, Li Y, Liu B, Wang S, Xu X, Nie Y, Wu K, Fan D, Xia L. SOX12 Facilitates Hepatocellular Carcinoma Progression and Metastasis through Promoting Regulatory T-Cells Infiltration and Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310304. [PMID: 39072947 PMCID: PMC11423149 DOI: 10.1002/advs.202310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-β1 (TGF-β1)/TGFβR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFβR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFβR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjie Huang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Siwen Li
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengyu Sun
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dian Hu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junqing Jiang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zerui Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yijun Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yufei Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiaqian Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhangfan Wu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ji
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Danfei Liu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoping Chen
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Bixiang Zhang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Huifang Liang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Limin Xia
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| |
Collapse
|
24
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
25
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
27
|
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, Gong L, Diao H. Hepatitis B Virus-Mediated m6A Demethylation Increases Hepatocellular Carcinoma Stemness and Immune Escape. Mol Cancer Res 2024; 22:642-655. [PMID: 38546386 PMCID: PMC11217737 DOI: 10.1158/1541-7786.mcr-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 07/03/2024]
Abstract
Hepatitis B viral (HBV) persistent infection plays a significant role in hepatocellular carcinoma (HCC) tumorigenesis. Many studies have revealed the pivotal roles of N6-methyladenosine (m6A) in multiple cancers, while the regulatory mechanism in stemness maintenance of HBV persistent infection-related HCC remains elusive. Here, we demonstrated that the level of m6A modification was downregulated by HBV in HBV-positive HCC, through enhanced stability of ALKBH5 mRNA. More specifically, we also identified that ALKBH5 mRNA was functionally required for the stemness maintenance and self-renewal in the HBV-positive HCC, but dispensable in HBV-negative HCC. Mechanistically, ALKBH5 demethylated the m6A modification in the 3' untranslated region of the oncogenic gene SNAI2 to prevent the recognition of YTHDF2 therewith stabilize SNAI2 transcripts, contributing to cancer stem cell traits in HBV-positive HCC. Moreover, the expression of SNAI2 reversed the suppression of stemness properties by knocking down ALKBH5. In addition, ALKBH5/SNAI2 axis accelerates tumor immune evasion through activated ligand of immune checkpoint CD155. Our study unveiled that the ALKBH5 induces m6A demethylation of the SNAI2 as a key regulator in HBV-related HCC, and identifies the function of ALKBH5/SNAI2/YTHDF2 axis in promoting the stem-like cells phenotype and immune escape during HBV infection. IMPLICATIONS HBV promotes HCC stemness maintenance through elevate m6A modification of SNAI2 in an ALKBH5-YTHDF2-dependent manner and increases the expression of the ligand of immune checkpoint CD155.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, P.R. China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
28
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
29
|
Ouyang J, Hu S, Zhu Q, Li C, Kang T, Xie W, Wang Y, Li Y, Lu Y, Qi J, Xia M, Chen J, Yang Y, Sun Y, Gao T, Ye L, Liang Q, Pan Y, Zhu C. RANKL/RANK signaling recruits Tregs via the CCL20-CCR6 pathway and promotes stemness and metastasis in colorectal cancer. Cell Death Dis 2024; 15:437. [PMID: 38902257 PMCID: PMC11190233 DOI: 10.1038/s41419-024-06806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
TNF receptor superfamily member 11a (TNFRSF11a, RANK) and its ligand TNF superfamily member 11 (TNFRSF11, RANKL) are overexpressed in many malignancies. However, the clinical importance of RANKL/RANK in colorectal cancer (CRC) is mainly unknown. We examined CRC samples and found that RANKL/RANK was elevated in CRC tissues compared with nearby normal tissues. A higher RANKL/RANK expression was associated with a worse survival rate. Furthermore, RANKL was mostly produced by regulatory T cells (Tregs), which were able to promote CRC advancement. Overexpression of RANK or addition of RANKL significantly increased the stemness and migration of CRC cells. Furthermore, RANKL/RANK signaling stimulated C-C motif chemokine ligand 20 (CCL20) production by CRC cells, leading to Treg recruitment and boosting tumor stemness and malignant progression. This recruitment process was accomplished by CCL20-CCR6 interaction, demonstrating a connection between CRC cells and immune cells. These findings suggest an important role of RANKL/RANK in CRC progression, offering a potential target for CRC prevention and therapy.
Collapse
Affiliation(s)
- Jing Ouyang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Shuang Hu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Wenlin Xie
- Pathological Diagnostic Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Junhua Qi
- Department of Clinical Medical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Xia
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Jinrun Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Yingqian Yang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
| | - Yazhou Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianshun Gao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China.
| | - Qian Liang
- Department of Spine Surgery, The First Affiliated Hospital of Shenzhen University, The Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
30
|
Luo T, Tan X, Qing G, Yu J, Liang XJ, Liang P. A natural killer T cell nanoagonist-initiated immune cascade for hepatocellular carcinoma synergistic immunotherapy. NANOSCALE 2024; 16:11126-11137. [PMID: 38787697 DOI: 10.1039/d4nr00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Natural killer T (NKT) cell-mediated immunotherapy shows great promise in hepatocellular carcinoma featuring an inherent immunosuppressive microenvironment. However, targeted delivery of NKT cell agonists remains challenging. Here, we developed a hyaluronic acid (HA) modified metal organic framework (zeolitic imidazolate framework-8, ZIF-8) to encapsulate α-galactosylceramide (α-Galcer), a classic NKT cell agonist, and doxorubicin (DOX) for eliminating liver cancer, denoted as α-Galcer/DOX@ZIF-8@HA. In the tumor microenvironment (TME), these pH-responsive nano-frameworks can gradually collapse to release α-Galcer for activating NKT cells and further boosting other immune cells in order to initiate an antitumor immune cascade. Along with DOX, the released α-Galcer enabled efficient NKT cell activation in TME for synergistic immunotherapy and tumor elimination, leading to evident tumor suppression and prolonged animal survival in both subcutaneous and orthotopic liver tumor models. Manipulating NKT cell agonists into functional nano-frameworks in TME may be matched with other advanced managements applied in a wider range of cancer therapies.
Collapse
Affiliation(s)
- Ting Luo
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Xiaoqiong Tan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Liang
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
31
|
Zhang QW, Zhu MX, Liu WF, Rui WW, Chen Y, Ding XY, Jiang YS, Wu ZY, Liu BB. Identification of clinically relevant subsets CD39 +PD-1 +CD8 + T cells and CD39 + regulatory T cells in intrahepatic cholangiocarcinoma using single-cell CyTOF. Transl Oncol 2024; 44:101954. [PMID: 38608405 PMCID: PMC11024660 DOI: 10.1016/j.tranon.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy with limited treatment options and a dismal prognosis. The tumor immune microenvironment (TIME) is crucial for iCCA progression, yet its comprehensive characterization remains incomplete. This study utilized mass cytometry by time of flight (CyTOF) to comprehensively analyze immune cell populations in fresh iCCA tumor samples and adjacent peritumor liver tissues. Notably, NK cell percentages significantly decreased in iCCA lesions compared to peritumor liver tissues. Conversely, an enrichment of immunosuppressive CD39+Foxp3+CD4+ regulatory T cells (CD39+T-regs) and exhausted-like CD8+T cells (with pronounced CD39 and PD-1 expression) within TIME was identified and confirmed by multiplex immunofluorescence staining in an independent patient cohort (n = 140). Crucially, tumor-infiltrating CD39+T-regs and CD39+PD-1+CD8+T cells emerged as independent prognostic indicators associated with an unfavorable prognosis in iCCA. These findings unveil the intricate immune landscape within iCCA, offering valuable insights for disease management and novel cancer immunotherapies.
Collapse
Affiliation(s)
- Qi-Wei Zhang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai 200025, China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wen-Feng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wei-Wei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Yi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai 200025, China.
| | - Yong-Sheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai 200025, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhi-Yuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai 200025, China.
| | - Bin-Bin Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
32
|
Zhang L, Yu L. The role of the microscopic world: Exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore) 2024; 103:e38078. [PMID: 38758914 PMCID: PMC11098217 DOI: 10.1097/md.0000000000038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
Microorganisms, including bacteria, viruses, and fungi, coexist in the human body, forming a symbiotic microbiota that plays a vital role in human health and disease. Intratumoral microbial components have been discovered in various tumor tissues and are closely linked to the occurrence, progression, and treatment results of cancer. The intratumoral microbiota can enhance antitumor immunity through mechanisms such as activating the stimulator of interferon genes signaling pathway, stimulating T and NK cells, promoting the formation of TLS, and facilitating antigen presentation. Conversely, the intratumoral microbiota might suppress antitumor immune responses by increasing reactive oxygen species levels, creating an anti-inflammatory environment, inducing T cell inactivation, and enhancing immune suppression, thereby promoting cancer progression. The impact of intratumoral microbiota on antitumor immunity varies based on microbial composition, interactions with cancer cells, and the cancer's current state. A deep understanding of the complex interactions between intratumoral microbiota and antitumor immunity holds the potential to bring new therapeutic strategies and targets to cancer immunotherapy.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| | - Liang Yu
- Department of Cardiac Surgery, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| |
Collapse
|
33
|
Wang Y, Jin B, Wu X, Xing J, Zhang B, Chen X, Liu X, Wan X, Du S. Exploration of prognostic and treatment markers in hepatocellular carcinoma via GPCR-related genes analysis. Heliyon 2024; 10:e29659. [PMID: 38694033 PMCID: PMC11058304 DOI: 10.1016/j.heliyon.2024.e29659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
Background G protein-coupled receptors (GPCRs), the biggest family of signaling receptors, account for 34 % of all the drug targets approved by the Food and Drug Administration (FDA). It has been gradually recognized that GPCRs are of significance for tumorigenesis, but in-depth studies are still required to explore specific mechanisms. In this study, the role of GPCRs in hepatocellular carcinoma (HCC) was elucidated, and GPCR-related genes were employed for building a risk-score model for the prognosis and treatment efficacy prediction of HCC patients. Methods Patients' data on HCC were sourced from the Liver Hepatocellular Carcinoma-Japan (LIRI-JP) and The Cancer Genome Atlas (TCGA) databases, while GPCR-related genes were obtained from the Molecular Signatures Database (MSigDB). Univariant and multivariant Cox regression analyses, as well as least absolute shrinkage and selection operator (LASSO) were performed with the aim of identifying differentially expressed GPCR-related genes and grouping patients. Differential expression and functional enrichment analyses were performed; protein-protein interaction (PPI) mechanisms were explored; hub genes and micro ribonucleic acid (miRNA)-target gene regulatory networks were constructed. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to evaluate immune infiltration levels and genetic variations. Sensitivity to immunotherapy and common antitumor drugs was predicted via the database Genomics of Drug Sensitivity in Cancer (GDSC). Results A GPCR-related risk score containing eight GPCR-related genes (atypical chemokine receptor 3 (ACKR3), C-C chemokine receptor type 3 (CCR3), CCR7, frizzled homolog 5 (FZD5), metabotropic glutamate receptor 8 (GRM8), hydroxycarboxylic acid receptor 1 (HCAR1), 5-hydroxytryptamine receptor 5A (HTR5A) and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6)) was set up. In addition, patients were classified into groups with high and low risks. Patients in the high-risk group exhibited a worse prognosis but demonstrated a more favorable immunotherapy response rate compared with those in the low-risk group. Distinct sensitivity to chemotherapeutic drugs was observed. A clinical prediction model on the basis of GPCR-related risk scores was constructed. Areas under the curves (AUC) corresponding to one-, three- and five-year survival were 0.731, 0.765 and 0.731, respectively. Conclusions In this study, an efficient HCC prognostic prediction model was constructed by only GPCR-related genes, which are all potential targets for HCC treatment.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiali Xing
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Baoluhe Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaokun Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
34
|
Ren Z, Yang K, Zhu L, Yin D, Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol 2024; 132:111934. [PMID: 38574701 DOI: 10.1016/j.intimp.2024.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
PD-1/PD-L1 blockade therapy has brought great success to cancer treatment. Nevertheless, limited beneficiary populations and even hyperprogressive disease (HPD) greatly constrain the application of PD-1/PD-L1 inhibitors in clinical treatment. HPD is a special pattern of disease progression with rapid tumor growth and even serious consequences of patient death, which requires urgent attention. Among the many predisposing causes of HPD, regulatory T cells (Tregs) are suspected because they are amplified in cases of HPD. Tregs express PD-1 thus PD-1/PD-L1 blockade therapy may have an impact on Tregs which leads to HPD. Tregs are a subset of CD4+ T cells expressing FoxP3 and play critical roles in suppressing immunity. Tregs migrate toward tumors in the presence of chemokines to suppress antitumor immune responses, causing cancer cells to grow and proliferate. Studies have shown that deleting Tregs could enhance the efficacy of PD-1/PD-L1 blockade therapy and reduce the occurrence of HPD. This suggests that immunotherapy combined with Treg depletion may be an effective means of avoiding HPD. In this review, we summarized the immunosuppressive-related functions of Tregs in antitumor therapy and focused on advances in therapy combining Tregs depletion with PD-1/PD-L1 blockade in clinical studies. Moreover, we provided an outlook on Treg-targeted HPD early warning for PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Kaiqing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
35
|
Qian J, Huang C, Wang M, Liu Y, Zhao Y, Li M, Zhang X, Gao X, Zhang Y, Wang Y, Huang J, Li J, Zhou Q, Liu R, Wang X, Cui J, Yang Y. Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment. Redox Biol 2024; 71:103103. [PMID: 38471282 PMCID: PMC10945175 DOI: 10.1016/j.redox.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.
Collapse
Affiliation(s)
- Jiali Qian
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ying Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangyu Gao
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yawen Zhang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinya Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiwen Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanchun Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Yehong Yang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Broholm M, Mathiasen AS, Apol ÁD, Weis N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses 2024; 16:707. [PMID: 38793588 PMCID: PMC11125979 DOI: 10.3390/v16050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
This systematic review investigates the immunosuppressive environment in HBV-associated hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease progression and recurrence, indicating its potential as both a prognostic indicator and a target for immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future perspective, understanding the intricate interplay between innate and adaptive immune responses holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for HBV-associated HCC.
Collapse
Affiliation(s)
- Malene Broholm
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Anne-Sofie Mathiasen
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Ása Didriksen Apol
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
38
|
Guo Y, Hu P, Shi J. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy. J Am Chem Soc 2024; 146:10217-10233. [PMID: 38563421 DOI: 10.1021/jacs.3c14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Although immunotherapy is relatively effective in treating hematological malignancies, their efficacy against solid tumors is still suboptimal or even noneffective presently. Compared to hematological cancers, solid tumors exhibit strikingly different immunosuppressive microenvironment, severely deteriorating the efficacy of immunotherapy: (1) chemical features such as hypoxia and mild acidity suppress the activity of immune cells, (2) the pro-tumorigenic domestication of immune cells in the microenvironment within the solid tumors further undermines the effectiveness of immunotherapy, and (3) the dense physical barrier of solid tumor tissues prevents the effective intratumoral infiltration and contact killing of active immune cells. Therefore, we believe that reversing the immunosuppressive microenvironment are of critical priority for the immunotherapy against solid tumors. Due to their unique morphologies, structures, and compositions, nanomedicines have become powerful tools for achieving this goal. In this Perspective, we will first briefly introduce the immunosuppressive microenvironment of solid tumors and then summarize the most recent progresses in nanomedicine-based immunotherapy for solid tumors by remodeling tumor immune-microenvironment in a comprehensive manner. It is highly expected that this Perspective will aid in advancing immunotherapy against solid tumors, and we are highly optimistic on the future development in this burgeoning field.
Collapse
Affiliation(s)
- Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
39
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
40
|
Sang X, Gan T, Ge G, Li D, Mei Y, Pan C, Long S, Xie B, Yu X, Chen Z, Wang H. Circulating Immune Landscape Profiling in Psoriasis Vulgaris and Psoriatic Arthritis by Mass Cytometry. J Immunol Res 2024; 2024:9927964. [PMID: 38590608 PMCID: PMC11001477 DOI: 10.1155/2024/9927964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/30/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Background Psoriasis, a systemic disorder mediated by the immune system, can appear on the skin, joints, or both. Individuals with cutaneous psoriasis (PsC) have an elevated risk of developing psoriatic arthritis (PsA) during their lifetime. Despite this known association, the cellular and molecular mechanisms underlying this progression remain unclear. Methods We performed high-dimensional, in-depth immunophenotyping of peripheral blood mononuclear cells (PBMCs) in patients with PsA and psoriasis vulgaris (PsV) by mass cytometry. Blood samples were collected before and after therapy for a longitudinal study. Then three sets of comparisons were made here: active PsA vs. active PsV, untreated PsV vs. treated PsV, and untreated PsA vs. treated PsA. Results Marked differences were observed in multiple lymphocyte subsets of PsA related to PsV, with expansion of CD4+ T cells, CD16- NK cells, and B cells. Notably, two critical markers, CD28 and CD127, specifically differentiated PsA from PsV. The expression levels of CD28 and CD127 on both Naïve T cells (TN) and central memory CD4+ T cells (TCM) were considerably higher in PsA than PsV. Meanwhile, after treatment, patients with PsV had higher levels of CD28hi CD127hi CD4+ TCM cells, CD28hi CD127hi CD4+ TN cells, and CD16- NK cells. Conclusion In the circulation of PsA patients, the TN and CD4+ TCM are characterized with more abundant CD28 and CD127, which effectively distinguished PsA from PsV. This may indicate that individuals undergoing PsV could be stratified at high risk of developing PsA based on the circulating levels of CD28 and CD127 on specific cell subsets.
Collapse
Affiliation(s)
- Xudong Sang
- Zhejiang Institute of Dermatology, Deqing, China
| | - Tian Gan
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Gai Ge
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dan Li
- Zhejiang Institute of Dermatology, Deqing, China
| | - Youming Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chun Pan
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Siyu Long
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Bibo Xie
- Zhejiang Institute of Dermatology, Deqing, China
| | - Xiaobing Yu
- Zhejiang Institute of Dermatology, Deqing, China
| | - Zhiming Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
41
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Gupta T, Jarpula NS. Hepatocellular carcinoma immune microenvironment and check point inhibitors-current status. World J Hepatol 2024; 16:353-365. [PMID: 38577535 PMCID: PMC10989304 DOI: 10.4254/wjh.v16.i3.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and has a high mortality rate. The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatment available to a particular stage. The recent description of the tumor microenvironment (TME) in HCC has provided a new concept of immunogenicity within the HCC. Virus-related HCC has been shown to be more immunogenic with higher expression of cytotoxic T lymphocytes and decreased elements for immunosuppression such as regulatory T cells. This immunogenic milieu provides a better response to immunotherapy especially immune checkpoint inhibitors (ICIs). In addition, the recent data on combining locoregional therapies and other strategies may convert the less immunogenic state of the TME towards higher immunogenicity. Therefore, data are emerging on the use of combinations of locoregional therapy and ICIs in unresectable or advanced HCC and has shown better survival outcomes in this difficult population.
Collapse
Affiliation(s)
- Tarana Gupta
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India.
| | - Nikhil Sai Jarpula
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| |
Collapse
|
43
|
Varghese N, Majeed A, Nyalakonda S, Boortalary T, Halegoua-DeMarzio D, Hann HW. Review of Related Factors for Persistent Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:777. [PMID: 38398168 PMCID: PMC10887172 DOI: 10.3390/cancers16040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the largest global cause of hepatocellular carcinoma (HCC). Current HBV treatment options include pegylated interferon-alpha and nucleos(t)ide analogues (NAs), which have been shown to be effective in reducing HBV DNA levels to become undetectable. However, the literature has shown that some patients have persistent risk of developing HCC. The mechanism in which this occurs has not been fully elucidated. However, it has been discovered that HBV's covalently closed circular DNA (cccDNA) integrates into the critical HCC driver genes in hepatocytes upon initial infection; additionally, these are not targets of current NA therapies. Some studies suggest that HBV undergoes compartmentalization in peripheral blood mononuclear cells that serve as a sanctuary for replication during antiviral therapy. The aim of this review is to expand on how patients with HBV may develop HCC despite years of HBV viral suppression and carry worse prognosis than treatment-naive HBV patients who develop HCC. Furthermore, HCC recurrence after initial surgical or locoregional treatment in this setting may cause carcinogenic cells to behave more aggressively during treatment. Curative novel therapies which target the life cycle of HBV, modulate host immune response, and inhibit HBV RNA translation are being investigated.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Amry Majeed
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Suraj Nyalakonda
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Tina Boortalary
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Hie-Won Hann
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
44
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
45
|
Ouyang L, Sun MM, Zhou PS, Ren YW, Liu XY, Wei WY, Song ZS, Lu K, Yang LX. LncRNA FOXD1-AS1 regulates pancreatic cancer stem cell properties and 5-FU resistance by regulating the miR-570-3p/SPP1 axis as a ceRNA. Cancer Cell Int 2024; 24:4. [PMID: 38167126 PMCID: PMC10763109 DOI: 10.1186/s12935-023-03181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in the pathogenesis of human cancers. Previous studies have highlighted the role of long non-coding RNA (lncRNA) in modulating the stemness of CSCs. In our investigation, we identified an upregulation of lncRNA FOXD1-AS1 in CSCs. The enforced expression of lncRNA FOXD1-AS1 promotes tumorigenesis and self-renewal in pancreatic cancer CSCs. Conversely, the knockdown of lncRNA FOXD1-AS1 inhibits tumorigenesis and self-renewal in pancreatic cancer CSCs. Furthermore, our findings reveal that lncRNA FOXD1-AS1 enhances self-renewal and tumorigenesis in pancreatic cancer CSCs by up-regulating osteopontin/secreted phosphoprotein 1(SPP1) and acting as a ceRNA to sponge miR-570-3p in pancreatic cancer (PC) CSCs. Additionally, lncRNA FOXD1-AS1 depleted pancreatic cancer cells exhibit heightened sensitivity to 5-FU-indued cell growth inhibition and apoptosis. Analysis of patient-derived xenografts (PDX) indicates that a low level of lncRNA FOXD1-AS1 may serve as a predictor of 5-FU benefits in PC patients. Moreover, the introduction of SPP1 can reverse the sensitivity of lncRNA FOXD1-AS1-knockdown PC cells to 5-FU-induced cell apoptosis. Importantly, molecular studies have indicated that the elevated levels of lncRNAFOXD1-AS1 in PC are facilitated through METTL3 and YTHDF1-dependent m6A methylation. In summary, our results underscore the critical functions of lncRNA FOXD1-AS1 in the self-renewal and tumorigenesis of pancreatic cancer CSCs, positioning lncRNA FOXD1-AS1 as a promising therapeutic target for PC.
Collapse
Affiliation(s)
- Liu Ouyang
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Min-Min Sun
- Department of Hepatic Surgery I, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Ping-Sheng Zhou
- Department of Ultrasonic Intervention, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yi-Wei Ren
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xin-Yu Liu
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wan-Ying Wei
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Zhen-Shun Song
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Kai Lu
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
| | - Li-Xue Yang
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
46
|
Luo T, Wang Z, Yu X, Han Z, Cheng Z, Liu F, Yu J, Liang P. More Ultrasound-Guided Percutaneous Microwave Ablation Leads to Higher Immune-Related Gene Expression and Boosts PD-1 Monoclonal Antibodies for Liver Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:150-157. [PMID: 37867090 DOI: 10.1016/j.ultrasmedbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE The aim of the work described here was to investigate the relative contribution of subtotal ultrasound-guided percutaneous microwave ablation (MWA) to amplifying programmed cell death protein-1 (PD-1) inhibition in advanced hepatocellular carcinoma (HCC). METHODS Between April 2019 and December 2021, advanced HCC patient demographics, tumor response, survival data, neutrophil-to-lymphocyte ratio (NLR) and peripheral lymphocyte profiles were retrospectively collected and analyzed. In hepa1-6 tumor-bearing C57BL/6J mice, RNA sequencing, flow cytometry, immunohistochemistry staining and cytokine tests were also performed. RESULTS Twenty-nine HCC patients were enrolled, with a median follow-up duration of 15.1 mo. Compared with the ablation rate (AR) ≤50% group (n = 10), the AR >50% group (n = 19) had a higher disease control rate, a longer time to progression and a longer overall survival. More patients in the AR >50% group had an early decrease in NLR and better immune activation. RNA sequencing of murine tumors subjected to MWA >50% AR showed that immune-related gene expression upregulated. CD8+ T cells, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were also increased, indicating that MWA >50% AR boosted the immunomodulatory effect of PD-1 inhibitors. CONCLUSION More MWA could induce superior antitumor immunity by enhancing immune-related gene expression, priming CD8+ T cells and thereby boosting PD-1 inhibition. It is advisable that eradication of tumors to the degree possible should be considered within technical access to obtain a better prognosis.
Collapse
Affiliation(s)
- Ting Luo
- School of Medicine, Nankai University, Tianjin, China; Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhen Wang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ping Liang
- School of Medicine, Nankai University, Tianjin, China; Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
47
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
48
|
Lin S, Cao Y, Zhu K, Yang C, Zhu X, Zhang H, Zhang R. Identification of a Novel Prognostic Signature Based on N-Linked Glycosylation and Its Correlation with Immunotherapy Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1749-1765. [PMID: 37841372 PMCID: PMC10575065 DOI: 10.2147/jhc.s417407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Background The complex tumor microenvironment of hepatocellular carcinoma (HCC) has led to a low response to immune checkpoints inhibitors (ICIs) and a poor prognosis. PD-L1, as one of the indications for ICIs, is rich in glycosylation modifications, which result in untimely ICIs. Our study constructed a prognostic model based on N-linked glycosylation related genes for predicting the prognosis and the response to ICIs. Methods The list of N-linked glycosylation related genes is from the AmiGO2 database. The patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts were enrolled. The Cox regression was performed to develop a prognostic model and patients were divided into a low- and high-risk subgroups. The role of signature in HCC was well investigated by prognostic analysis, gene set enrichment analysis, and immune infiltration analysis. 21 recurrent HCC patients who received postoperative adjuvant ICIs were recruited to evaluate the relationship between immunotherapy response and the signature. In vitro studies were conducted to investigate the oncogenic effects of DDOST, STT3A and TMEM165 in HCC. Results 59 N-linked glycosylation related differentially expressed genes were screened from HCC and normal tissues in the TCGA cohort. The prognostic model was developed with DDOST, STT3A and TMEM165. The risk score could be an independent prognostic factor. Patients in the high-risk subgroup showed a worse prognosis than patients in the low-risk one. ssGSEA showed that patients in the low-risk subgroup tended to be in the immune-activated state, with higher levels of B cell and macrophage cell infiltrations and lower levels of regulatory T cell (Treg) infiltrations in both TCGC and GEO cohorts. Immunohistochemistry studies showed that DDOST, STT3A and TMEM165 are highly expressed in tumor tissues and patients with a high-risk score correlated with poor progression free survival and worse immunotherapeutic response. Furthermore, the proliferation of HCC cells was reduced after the knockdown of DDOST, as well as upon the knockdown of STT3A and TMEM165. Conclusion In this study, we establish that the risk model based on N-linked glycosylation related genes could efficiently predict the prognosis and tumor microenvironment immune state of HCC patients, and the risk score could serve as a novel indicator of immunotherapy.
Collapse
Affiliation(s)
- Shusheng Lin
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi Cao
- Emergency Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Zhu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong TCRCure Biopharma Technology Co., Ltd, Guangzhou, People’s Republic of China
| | - Caini Yang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiangping Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Honghua Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
49
|
You M, Gao Y, Fu J, Xie R, Zhu Z, Hong Z, Meng L, Du S, Liu J, Wang FS, Yang P, Chen L. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC. Hepatology 2023; 78:943-958. [PMID: 36999652 PMCID: PMC10442105 DOI: 10.1097/hep.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS HBV shapes the T-cell immune responses in HBV-related HCC. T cells can be recruited to the nidus, but limited T cells participate specifically in response to the HBV-related tumor microenvironment and HBV antigens. How epigenomic programs regulate T-cell compartments in virus-specific immune processes is unclear. APPROACH AND RESULTS We developed Ti-ATAC-seq. 2 to map the T-cell receptor repertoire, epigenomic, and transcriptomic landscape of αβ T cells at both the bulk-cell and single-cell levels in 54 patients with HCC. We deeply investigated HBV-specific T cells and HBV-related T-cell subsets that specifically responded to HBV antigens and the HBV + tumor microenvironment, respectively, characterizing their T-cell receptor clonality and specificity and performing epigenomic profiling. A shared program comprising NFKB1/2-, Proto-Oncogene, NF-KB Sub unit, NFATC2-, and NR4A1-associated unique T-cell receptor-downstream core epigenomic and transcriptomic regulome commonly regulated the differentiation of HBV-specific regulatory T-cell (Treg) cells and CD8 + exhausted T cells; this program was also selectively enriched in the HBV-related Treg-CTLA4 and CD8-exhausted T cell-thymocyte selection associated high mobility subsets and drove greater clonal expansion in HBV-related Treg-CTLA4 subset. Overall, 54% of the effector and memory HBV-specific T cells are governed by transcription factor motifs of activator protein 1, NFE2, and BACH1/2, which have been reported to be associated with prolonged patient relapse-free survival. Moreover, HBV-related tumor-infiltrating Tregs correlated with both increased viral titer and poor prognosis in patients. CONCLUSIONS This study provides insight into the cellular and molecular basis of the epigenomic programs that regulate the differentiation and generation of HBV-related T cells from viral infection and HBV + HCC unique immune exhaustion.
Collapse
Affiliation(s)
- Maojun You
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Gao
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Runze Xie
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Zhu
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Zhixian Hong
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Lingzhan Meng
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science and PUMC, Beijing, China
| | - Junliang Liu
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Pengyuan Yang
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
50
|
Huang CH, Hsieh SY. More immunosuppressive, more immunotherapy responsive? A double-edged sword of HBV-induced immune response in HCC. Hepatology 2023; 78:706-708. [PMID: 37013921 DOI: 10.1097/hep.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | | |
Collapse
|