1
|
Seydi H, Nouri K, Shokouhian B, Piryaei A, Hassan M, Cordani M, Zarrabi A, Shekari F, Vosough M. MiR-29a-laden extracellular vesicles efficiently induced apoptosis through autophagy blockage in HCC cells. Eur J Pharm Biopharm 2024; 203:114470. [PMID: 39197541 DOI: 10.1016/j.ejpb.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND In spite of significant advancements in theraputic modalities for hepatocellular carcinoma (HCC), there is still a high annual mortality rate with a rising incidence. Major challenges in the HCC clinical managment are related to the development of therapy resistance, and evasion of tumor cells apoptosis which leading unsatisfactory outcomes in HCC patients. Previous investigations have shown that autophagy plays crucial role in contributing to drug resistance development in HCC. Although, miR-29a is known to counteract authophagy, increasing evidence revealed a down-regulation of miR-29a in HCC patients which correlates with poor prognosis. Beside, evidences showed that miR-29a serves as a negative regulator of autophagy in other cancers. In the current study, we aim to investigate the impact of miR-29a on the autophagy and apoptosis in HCC cells using extracellular vesicles (EVs) as a natural delivery system given their potential in the miRNA delivery both in vitro and in vivo. METHOD Human Wharton's Jelly mesenchymal stromal cell-derived extracellular vesicles were lately isolated through 20,000 or 110,000 × g centrifugation (EV20K or EV110K, respectively), characterized by western blot (WB), scanning electron microscopy (SEM), and dynamic light scattering (DLS). miR-29a was subsequently loaded into these EVs and its loading efficiency was evaluated via RT-qPCR. Comprehensive in vitro and in vivo assessments were then performed on Huh-7 and HepG2 cell lines. RESULTS EV20K-miR-29a treatment significantly induces cell apoptosis and reduces both cell proliferation and colony formation in Huh-7 and HepG2 cell lines. In addition, LC3-II/LC3-I ratio was increased while the expression of key autophagy regulators TFEB and ATG9A were downregulated by this treatment. These findings suggest an effective blockade of autophagy by EV20K-miR-29a leading to apoptosis in the HCC cell lines through concomitant targeting of critical mediators within each pathway.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 14155-4364, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran
| | - Kosar Nouri
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 14155-4364, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14155-4364, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
3
|
He M, Liu Y, Chen S, Deng H, Feng C, Qiao S, Chen Q, Hu Y, Chen H, Wang X, Jiang X, Xia X, Zhao M, Lyu N. Serum amyloid A promotes glycolysis of neutrophils during PD-1 blockade resistance in hepatocellular carcinoma. Nat Commun 2024; 15:1754. [PMID: 38409200 PMCID: PMC10897330 DOI: 10.1038/s41467-024-46118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
The response to programmed death-1 (PD-1) blockade varies in hepatocellular carcinoma (HCC). We utilize a panel of 16 serum factors to show that a circulating level of serum amyloid A (SAA) > 20.0 mg/L has the highest accuracy in predicting anti-PD-1 resistance in HCC. Further experiments show a correlation between peritumoral SAA expression and circulating SAA levels in patients with progressive disease after PD-1 inhibition. In vitro experiments demonstrate that SAA induces neutrophils to express PD-L1 through glycolytic activation via an LDHA/STAT3 pathway and to release oncostatin M, thereby attenuating cytotoxic T cell function. In vivo, genetic or pharmacological inhibition of STAT3 or SAA eliminates neutrophil-mediated immunosuppression and enhances antitumor efficacy of anti-PD-1 treatment. This study indicates that SAA may be a critical inflammatory cytokine implicated in anti-PD-1 resistance in HCC. Targeting SAA-induced PD-L1+ neutrophils through STAT3 or SAA inhibition may present a potential approach for overcoming anti-PD1 resistance.
Collapse
Affiliation(s)
- Meng He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haijing Deng
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Cheng Feng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qifeng Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiongying Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, Jiang J, Wang L, Mang Y, Gao Y, Zhang S, Ran J, Li L. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer 2023; 22:55. [PMID: 36932387 PMCID: PMC10024440 DOI: 10.1186/s12943-023-01759-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can be encapsulated into exosomes to participate in intercellular communication, affecting the malignant progression of a variety of tumors. Dysfunction of CD8 + T cells is the main factor in immune escape from hepatocellular carcinoma (HCC). Nevertheless, the effect of exosome-derived circRNAs on CD8 + T-cell dysfunction needs further exploration. METHODS The effect of circCCAR1 on the tumorigenesis and metastasis of HCC was assessed by in vitro and in vivo functional experiments. The function of circCCAR1 in CD8 + T-cell dysfunction was measured by enzyme-linked immunosorbent assay (ELISA), western blotting and flow cytometry. Chromatin immunoprecipitation, biotinylated RNA pull-down, RNA immunoprecipitation, and MS2 pull-down assays were used to the exploration of mechanism. A mouse model with reconstituted human immune system components (huNSG mice) was constructed to explore the role of exosomal circCCAR1 in the resistance to anti-PD1 therapy in HCC. RESULTS Increased circCCAR1 levels existed in tumor tissues and exosomes in the plasma of HCC patients, in the culture supernatant and HCC cells. CircCCAR1 accelerated the growth and metastasis of HCC in vitro and in vivo. E1A binding protein p300 (EP300) and eukaryotic translation initiation factor 4A3 (EIF4A3) promoted the biogenesis of circCCAR1, and Wilms tumor 1-associated protein (WTAP)-mediated m6A modification enhanced circCCAR1 stability by binding insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). CircCCAR1 acted as a sponge for miR-127-5p to upregulate its target WTAP and a feedback loop comprising circCCAR1/miR-127-5p/WTAP axis was formed. CircCCAR1 is secreted by HCC cells in a heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1)-dependent manner. Exosomal circCCAR1 was taken in by CD8 + T cells and caused dysfunction of CD8 + T cells by stabilizing the PD-1 protein. CircCCAR1 promoted resistance to anti-PD1 immunotherapy. Furthermore, increased cell division cycle and apoptosis regulator 1 (CCAR1) induced by EP300 promoted the binding of CCAR1 and β-catenin protein, which further enhanced the transcription of PD-L1. CONCLUSIONS The circCCAR1/miR-127-5p/WTAP feedback loop enhances the growth and metastasis of HCC. Exosomal circCCAR1 released by HCC cells contributes to immunosuppression by facilitating CD8 + T-cell dysfunction in HCC. CircCCAR1 induces resistance to anti-PD1 immunotherapy, providing a potential therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Zongqiang Hu
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Gang Chen
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Yingpeng Zhao
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Hongqiang Gao
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Laibang Li
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Yanfeng Yin
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Jie Jiang
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Li Wang
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Yuanyi Mang
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Yang Gao
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China
| | - Shengning Zhang
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China.
| | - Jianghua Ran
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China.
| | - Li Li
- Department of Hepato-Pancreato-Biliary Surgery, First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming, 650032, Yunnan, China.
| |
Collapse
|