1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Marjot T. Positioning the liver at the centre of fructose-associated extrahepatic cancer. J Hepatol 2025; 82:1135-1137. [PMID: 40102073 DOI: 10.1016/j.jhep.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, UK; Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
3
|
Liu Y, Han F, Ma X, Yang L, Shi Z. Organic acids from ice wine ameliorate fructose-induced disorders of glycolipid metabolism in C57BL/6J mice. Food Funct 2025; 16:3296-3307. [PMID: 40079381 DOI: 10.1039/d4fo05580b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Excessive intake of fructose has been widely reported to cause glycolipid metabolism disorders, and it is unclear whether long-term consumption of ice wine, a sweet wine with high sugar content, is beneficial for health. In this study, 6-week-old male C57BL/6J mice were divided into pure water, ice wine, fructose, fructose + succinic acid, fructose + malic acid and fructose + alcohol groups to study the effects and mechanisms of organic acids on glycolipid metabolism. The results indicated that long-term consumption of ice wine did not lead to disorders of glycolipid metabolism, and organic acids inhibited the negative effects of fructose and reduced hepatic fat synthesis by decreasing the mRNA expression of hepatic ACC1, SREBP-1c, and ChREBP-β, as well as controlling the protein expression of KHK-C. These findings provide a theoretical basis for the healthy consumption of ice wine, helping consumers enjoy wine more scientifically and promoting the high-quality development of the industry.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Viti-Viniculture Key Laboratory of China General Chamber of Commerce, Northwest A&F University, Yangling 712100, China
| | - Xinyuan Ma
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Luye Yang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Zhenan Shi
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Hong JG, Trotman J, Carbajal Y, Dey P, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Bhattacharya D, Wang S, Friedman SL, DeRossi C, Chu J. Mannose reduces fructose metabolism and reverses MASH in human liver slices and murine models in vivo. Hepatol Commun 2025; 9:e0671. [PMID: 40116750 PMCID: PMC11927666 DOI: 10.1097/hc9.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Fibrosis drives liver-related mortality in metabolic dysfunction-associated steatohepatitis (MASH), yet we have limited medical therapies to target MASH-fibrosis progression. Here we report that mannose, a simple sugar, attenuates MASH steatosis and fibrosis in 2 robust murine models and human liver slices. METHODS The well-validated fat-and-tumor MASH murine model for liver steatosis and fibrosis was employed. Mannose was supplied in the drinking water at the start ("Prevention" group) or at week 6 of the 12-week MASH regimen ("Therapy" group). The in vivo antifibrotic effects of mannose supplementation were tested in a second model of carbon tetrachloride (CCl4)-induced liver fibrosis. A quantitative and automated digital pathology approach was used to comprehensively assess steatosis and fibrosis phenotypes. Mannose was also tested in vitro in human and primary mouse hepatocytes conditioned with free fatty acids alone or with fructose, and human precision-cut liver slices from patients with end-stage MASH cirrhosis. RESULTS Oral mannose supplementation improved liver fibrosis in vivo in both fat-and-tumor MASH and CCl4 mouse models, as well as in human precision-cut liver slice MASH samples. Mannose also reduced liver steatosis in fat-and-tumor MASH mice, and in human and mouse hepatocytes in vitro. Ketohexokinase, the main enzyme in fructolysis, was decreased with mannose in whole mouse liver, cultured hepatocytes, and human precision-cut liver slices. Removal of fructose or overexpression of ketohexokinase each abrogated the antisteatotic effects of mannose. CONCLUSIONS This study identifies mannose as a novel therapeutic candidate for MASH that mitigates steatosis by dampening hepatocyte ketohexokinase expression and exerts independent antifibrotic effects in 2 mouse models and human liver tissue slices.
Collapse
Affiliation(s)
- John G. Hong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joshaya Trotman
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yvette Carbajal
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Poulomi Dey
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mariel Glass
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Victoria Sclar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Isaac L. Alter
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Peng Zhang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Liheng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Chen
- PharmaNest Inc., Princeton, New Jersey, USA
| | | | - Dipankar Bhattacharya
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuang Wang
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L. Friedman
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
6
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Shi Q, Ran S, Song L, Yang H, Wang W, Liu H, Liu Q. NLRP6 overexpression improves nonalcoholic fatty liver disease by promoting lipid oxidation and decomposition in hepatocytes through the AMPK/CPT1A/PGC1A pathway. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:118-125. [PMID: 39819720 PMCID: PMC11744278 DOI: 10.12122/j.issn.1673-4254.2025.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD). METHODS Mouse models with high-fat diet (HFD) feeding for 16 weeks (n=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (n=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting. RESULTS HFD and MCD feeding both resulted in the development of NAFLD in mice, which showed significantly decreased NLRP6 expression in the liver. In PA-treated LO2 cells, NLRP6 overexpression significantly decreased cellular TG content and lipid deposition, while NLRP6 knockdown caused the opposite effects. NLRP6 overexpression in PA-treated LO2 cells also increased mRNA and protein expressions of PGC1A and CPT1A, levels of ATP and β-hydroxybutyrate, and the phosphorylation level of AMPK pathway; the oxidative decomposition of lipids induced by Ad-NLRP6 was inhibited by the use of AMPK inhibitors. CONCLUSIONS NLRP6 overexpression promotes lipid oxidation and decomposition through AMPK/CPT1A/PGC1A to alleviate lipid deposition in hepatocytes.
Collapse
Affiliation(s)
- Qing Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Suye Ran
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hanlin Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| |
Collapse
|
8
|
Fan YH, Zhang S, Wang Y, Wang H, Li H, Bai L. Inter-organ metabolic interaction networks in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2025; 15:1494560. [PMID: 39850476 PMCID: PMC11754069 DOI: 10.3389/fendo.2024.1494560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem metabolic disorder, marked by abnormal lipid accumulation and intricate inter-organ interactions, which contribute to systemic metabolic imbalances. NAFLD may progress through several stages, including simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and potentially liver cancer. This disease is closely associated with metabolic disorders driven by overnutrition, with key pathological processes including lipid dysregulation, impaired lipid autophagy, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and local inflammation. While hepatic lipid metabolism in NAFLD is well-documented, further research into inter-organ communication mechanisms is crucial for a deeper understanding of NAFLD progression. This review delves into intrahepatic networks and tissue-specific signaling mediators involved in NAFLD pathogenesis, emphasizing their impact on distal organs.
Collapse
Affiliation(s)
- Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Siyao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
10
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. Fructose-Induced Metabolic Dysfunction Is Dependent on the Baseline Diet, the Length of the Dietary Exposure, and Sex of the Mice. Nutrients 2024; 17:124. [PMID: 39796558 PMCID: PMC11722689 DOI: 10.3390/nu17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. This study investigates how diet and sex interact with fructose to modulate the metabolic outcomes. Methods: Male and female mice were fed different normal chow diets, Boston chow diet (BCD; 23% protein, 22% fat, 55% carbohydrates), Lexington chow diet (LXD; 24% protein, 18% fat, 58% carbohydrates), and low-fat diet (LFD; 20% protein, 10% fat, 70% carbohydrates), supplemented with 30% fructose in water. Results: Fructose-supplemented male mice on BCD gained weight and developed glucose intolerance and hepatic steatosis. Conversely, male mice given fructose on LXD did not gain weight, remained glucose-tolerant, and had normal hepatic lipid content. Furthermore, fructose-fed male mice on LFD did not gain weight. However, upon switching to BCD, they gained weight, exhibited worsening liver steatosis, and advanced hepatic insulin resistance. The effects of fructose are sex-dependent. Thus, female mice did not gain weight and remained insulin-sensitive with fructose supplementation on BCD, despite developing hepatic steatosis. These differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Conclusions: Metabolic dysfunction attributed to fructose intake is not a universal outcome. Instead, it depends on baseline diet, dietary exposure length, and sex.
Collapse
Affiliation(s)
- Taghreed Fadhul
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Heba Ali
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Yasir Alsiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Jibran A. Wali
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J. Simpson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| |
Collapse
|
11
|
Yang W, Pan Q, Li Q, Zhou S, Cao X. A simple, reliable and easily generalizable cell-based assay for screening potential drugs that inhibit lipid accumulation. Curr Res Toxicol 2024; 8:100213. [PMID: 39834517 PMCID: PMC11743863 DOI: 10.1016/j.crtox.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Ectopic lipid deposition in the hepatocyte plays an important role in the development of nonalcoholic fatty liver disease (NAFLD), which has become one of the most common causes of chronic liver disease worldwide yet no approved drugs are currently available. In this study, a cell-based method was developed to screen potential drugs with low toxicity that inhibit lipid accumulation. In the same 96-well plate, cytotoxicity was measured using CCK8 assay, followed by lipid content detection using BODIPY 493/503 via fluorometry assay, a lipid droplet-specific fluorescent dye commonly used in microscopy and flow cytometry, but not previously reported in fluorometry. Lipid content was normalized to DAPI staining to control for cell number. The results of this assay were highly consistent with the fluorescence microscopy, with significantly lower intra-group variability in detecting lipid accumulation induced by free fatty acids in Huh7 cells. Validation was conducted using 10 well documented steatotic compounds and 5 negative controls, all of which were correctly identified by the assay. In addition, the inhibitory effect of ML261, a well-known inhibitor of hepatic lipid droplets formation, was also confirmed by the assay both in AML12 cells and Hepa1-6 cells. To our knowledge, this study is the first to quantify lipid droplets using BODIPY 493/503 by fluorometry assay, and to demonstrate that CCK8 does not interfere with subsequent BODIPY 493/503 staining, both of which will reduce the cost and increase the efficiency. In conclusion, the method is simple, reliable, efficient and does not rely on expensive instruments, making it an easily generalizable approach to identify potential drug candidates for NAFLD treatment.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Qiuyue Pan
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Qi Li
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Sirui Zhou
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
12
|
Helsley RN, Zelows MM, Noffsinger VP, Anspach GB, Dharanipragada N, Mead AE, Cobo I, Carter A, Wu Q, Shalaurova I, Saito K, Morganti JM, Gordon SM, Graf GA. Hepatic Inactivation of Carnitine Palmitoyltransferase 1a Lowers Apolipoprotein B Containing Lipoproteins in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628437. [PMID: 39763810 PMCID: PMC11702516 DOI: 10.1101/2024.12.13.628437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of CPT1a SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of Cpt1a (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number. Despite a reduction in steady-state plasma lipids, VLDL-triglyceride (VLDL-TG) and cholesterol (VLDL-C) secretion rates are increased, suggesting accelerated clearance of apoB-containing lipoproteins (apoB-LPs) in LKO mice. Mechanistic approaches show greater peroxisome proliferator activated receptor α (PPARα) signaling which favors enhanced lipoprotein lipase-mediated metabolism of apoB-LPs, including increases in ApoCII and ApoAIV and reductions in ApoCIII & Angptl3. These studies provide mechanistic insight linking genetic variants and methylation status of CPT1a to reductions in circulating apoB-LPs in humans. HIGHLIGHTS Loss-of-function SNPs in CPT1a associate with reductions in plasma cholesterol in humans Hepatic Cpt1a expression positively associates with plasma cholesterol levels across inbred strains of miceLiver-specific Cpt1a deficiency lowers circulating apoB, plasma cholesterol, LDL-C, and LDL particle numberCpt1a ablation activates PPARα and favors clearance of apoB-containing lipoproteins.
Collapse
|
13
|
Park SH, Fadhul T, Conroy LR, Clarke HA, Sun RC, Wallenius K, Boucher J, O’Mahony G, Boianelli A, Persson M, Jung S, Jang C, Loria AS, Martinez GJ, Kipp ZA, Bates EA, Hinds TD, Divanovic S, Softic S. Knockdown of ketohexokinase versus inhibition of its kinase activity exert divergent effects on fructose metabolism. JCI Insight 2024; 9:e184396. [PMID: 39418102 PMCID: PMC11623947 DOI: 10.1172/jci.insight.184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Excessive fructose intake is a risk factor for the development of obesity and its complications. Targeting ketohexokinase (KHK), the first enzyme of fructose metabolism, has been investigated for the management of metabolic dysfunction-associated steatotic liver disease (MASLD). We compared the effects of systemic, small molecule inhibitor of KHK enzymatic activity with hepatocyte-specific, N-acetylgalactosamine siRNA-mediated knockdown of KHK in mice on an HFD. We measured KHK enzymatic activity, extensively quantified glycogen accumulation, performed RNA-Seq analysis, and enumerated hepatic metabolites using mass spectrometry. Both KHK siRNA and KHK inhibitor led to an improvement in liver steatosis; however, via substantially different mechanisms, KHK knockdown decreased the de novo lipogenesis pathway, whereas the inhibitor increased the fatty acid oxidation pathway. Moreover, KHK knockdown completely prevented hepatic fructolysis and improved glucose tolerance. Conversely, the KHK inhibitor only partially reduced fructolysis, but it also targeted triokinase, mediating the third step of fructolysis. This led to the accumulation of fructose-1 phosphate, resulting in glycogen accumulation, hepatomegaly, and impaired glucose tolerance. Overexpression of wild-type, but not kinase-dead, KHK in cultured hepatocytes increased hepatocyte injury and glycogen accumulation after treatment with fructose. The differences between KHK inhibition and knockdown are, in part, explained by the kinase-dependent and -independent effects of KHK on hepatic metabolism.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Pediatrics and Division of Pediatric Gastroenterology and
| | - Taghreed Fadhul
- Department of Pediatrics and Division of Pediatric Gastroenterology and
| | - Lindsey R. Conroy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Harrison A Clarke
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Biochemistry & Molecular Biology, Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, USA
| | - Ramon C. Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Biochemistry & Molecular Biology, Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, USA
| | - Kristina Wallenius
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Alessandro Boianelli
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Persson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunhee Jung
- Department of Biological Chemistry, School of Medicine; and Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine; and Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine; and Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Samir Softic
- Department of Pediatrics and Division of Pediatric Gastroenterology and
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625441. [PMID: 39651130 PMCID: PMC11623593 DOI: 10.1101/2024.11.26.625441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background/Objectives Numerous studies have implicated high intake of sugar, particularly fructose, with the development of obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This paradox questions how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. Methods To answer this question, male and female mice were fed different normal chow diets and provided 30% fructose solution in water. Results Fructose-supplemented male mice on the Boston Chow Diet (BCD=23% protein, 22% fat, 55% carbs) gained weight, developed glucose intolerance and hepatic steatosis. In contrast, male mice on the Lexington Chow Diet (LXD=24% protein, 18% fat, 58% carbs) did not gain weight, remained glucose tolerant, and had normal hepatic lipid content when supplemented with fructose. Furthermore, fructose-fed male mice on a Low-Fat Diet (LFD=20% protein, 10% fat, 70% carbs) didn't gain weight, but once switched to the BCD, they gained weight, exhibited worsening liver steatosis, and more advanced hepatic insulin resistance. The effects of fructose are sex-dependent, as female mice didn't gain weight and remained insulin-sensitive when given fructose on BCD, despite developing hepatic steatosis. Conclusions The differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Thus, metabolic dysfunction attributed to fructose intake is not a universal outcome; rather, it depends on the baseline diet, sex, and exposure length.
Collapse
|
15
|
Li SL, Zhou H, Liu J, Yang J, Jiang L, Yuan HM, Wang MH, Yang KS, Xiang M. Restoration of HMGCS2-mediated ketogenesis alleviates tacrolimus-induced hepatic lipid metabolism disorder. Acta Pharmacol Sin 2024; 45:1898-1911. [PMID: 38760545 PMCID: PMC11335741 DOI: 10.1038/s41401-024-01300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Min Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Heng Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Shan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Faienza MF, Cognetti E, Farella I, Antonioli A, Tini S, Antoniotti V, Prodam F. Dietary fructose: from uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39157959 DOI: 10.1080/10408398.2024.2392150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fructose consumption in pediatric subjects is rising, as the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Despite increasing evidence supporting the detrimental effects of fructose in the development of Metabolic Syndrome (MetS) and its related comorbidities, the association between fructose intake and liver disease remains unclear, mainly in youths. The current narrative review aims to illustrate the correlation between fructose metabolism and liver functions besides its impact on obesity and MASLD in pediatrics. Fructose metabolism is involved in the liver through the classical lipogenic pathway via de novo lipogenesis (DNL) or in the alternative pathway via uric acid accumulation. Hyperuricemia is one of the main features of MALSD patients, underlining how uric acid is growing interest as a new marker of disease. Observational and interventional studies conducted in children and adolescents, who consumed large amounts of fructose and glucose in their diet, were included. Most of these studies emphasized the association between high fructose intake and weight gain, dyslipidemia, insulin resistance, and MASLD/MASH, even in normal-weight children. Conversely, reducing fructose intake ameliorates liver fat accumulation, lipid profile, and weight. In conclusion, fructose seems a potent inducer of both insulin resistance and hepatic fat accumulation.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Cognetti
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Precision and Regenerative Medicine and Ionian Area, Clinica Medica "A. Murri", University of Bari "Aldo Moro", Bari, Italy
| | | | - Sabrina Tini
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | | | - Flavia Prodam
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
17
|
Zvekic M, Herbert M, Morales A, Softic S. Growth Hormone Treatment Normalized Liver Enzymes in an Adolescent with Obesity and Short Statute. ANNALS OF PEDIATRICS 2024; 7:1145. [PMID: 39233776 PMCID: PMC11373495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Metabolic Dysfunction Associated Steatotic Liver disease is the most common cause of chronic hepatitis in children and adults. The patients with MASLD have low thyroid hormone activity in the liver. Recent evidence suggests that patients with MASLD may also have haptic growth hormone deficiency. Here, we present a case of a 13-year-old adolescent with obesity and short stature whose liver enzymes normalized with growth hormone therapy. The patient initially presented to the primary care physician's office, revealing a BMI in the 93rd percentile and elevated liver enzymes (ALT = 170 U/L, AST = 94 U/L). Subsequent visits showed a BMI in the 96th percentile, with further elevation in liver enzymes (ALT = 179 U/L, AST = 101 U/L). Following six months of lifestyle intervention, BMI decreased to the 91st percentile, and liver enzymes improved (ALT = 72 U/L, AST = 56 U/L), but did not normalize. Other causes of chronic hepatitis were excluded. Concurrently, screening for short stature revealed delayed bone age, although insulin-like growth factor 1 (IGF1) and insulin-like growth factor-binding protein 3 (IGFB3) levels were normal. Moreover, the patient failed a growth hormone (GH) stimulation test, revealing GH deficiency, corroborated by MRI findings of pituitary hypoplasia. GH therapy was initiated at pubertal doses. Nine months of GH therapy entirely normalized liver enzymes (ALT = 18, AST = 23), and BMI was reduced to the 75th percentile. GH therapy should be further investigated in adolescents with short stature and MASLD.
Collapse
Affiliation(s)
- Mensur Zvekic
- Northern Kentucky University, Department of Anatomy and Physiology, Highland Heights, KY 41099
| | - Maddie Herbert
- Department of Pediatrics, Division of Adolescent Medicine, University of Kentucky College of Medicine, Lexington, KY. 40536
| | - Alba Morales
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Kentucky College of Medicine, Lexington, KY. 40536
| | - Samir Softic
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY. 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY. 40536
| |
Collapse
|
18
|
Ferreira JC, Villanueva AJ, Fadl S, Al Adem K, Cinviz ZN, Nedyalkova L, Cardoso THS, Andrade ME, Saksena NK, Sensoy O, Rabeh WM. Residues in the fructose-binding pocket are required for ketohexokinase-A activity. J Biol Chem 2024; 300:107538. [PMID: 38971308 PMCID: PMC11332825 DOI: 10.1016/j.jbc.2024.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Excessive fructose consumption is a primary contributor to the global surges in obesity, cancer, and metabolic syndrome. Fructolysis is not robustly regulated and is initiated by ketohexokinase (KHK). In this study, we determined the crystal structure of KHK-A, one of two human isozymes of KHK, in the apo-state at 1.85 Å resolution, and we investigated the roles of residues in the fructose-binding pocket by mutational analysis. Introducing alanine at D15, N42, or N45 inactivated KHK-A, whereas mutating R141 or K174 reduced activity and thermodynamic stability. Kinetic studies revealed that the R141A and K174A mutations reduced fructose affinity by 2- to 4-fold compared to WT KHK-A, without affecting ATP affinity. Molecular dynamics simulations provided mechanistic insights into the potential roles of the mutated residues in ligand coordination and the maintenance of an open state in one monomer and a closed state in the other. Protein-protein interactome analysis indicated distinct expression patterns and downregulation of partner proteins in different tumor tissues, warranting a reevaluation of KHK's role in cancer development and progression. The connections between different cancer genes and the KHK signaling pathway suggest that KHK is a potential target for preventing cancer metastasis. This study enhances our understanding of KHK-A's structure and function and offers valuable insights into potential targets for developing treatments for obesity, cancer, and metabolic syndrome.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adrian J Villanueva
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Zeynep Nur Cinviz
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Lyudmila Nedyalkova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Mario Edson Andrade
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Nitin K Saksena
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Ozge Sensoy
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Conroy C, Radulescu A, Attia SL, Shelman N, Lee JT, Monticelli RG, Hall S, Kohli R, Softic S. The combined pioglitazone and topiramate therapy for management of pediatric patients with severe MASLD. Saudi J Gastroenterol 2024; 30:252-259. [PMID: 38726916 PMCID: PMC11379251 DOI: 10.4103/sjg.sjg_428_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction associated steatotic liver disease (MASLD) is the most common cause of chronic hepatitis in adult and pediatric patients. Adolescents with severe MASLD can demonstrate a more aggressive disease phenotype as they more commonly develop liver fibrosis than BMI matched adults. Therefore, MASLD is the fastest growing indication for liver transplants in young adults. METHODS Pioglitazone has been shown to improve liver histology in adult patients with MASLD, and in some studies, it attenuated liver fibrosis. Despite its perceived efficacy, pioglitazone is not widely used, likely due to its side effect profile, specifically increased weight gain. Topiramate lowers body weight in adolescents and in combination with phentermine, is one of the few FDA-approved medications for the management of obesity in children over 12 years of age. We performed a retrospective review of the outcomes in pediatric patients with severe MASLD, treated with the combined pioglitazone and topiramate therapy. RESULTS Here, we report a case series of seven adolescents with severe MASLD and ≥F2 liver fibrosis treated with the combined pioglitazone and topiramate therapy. The combined therapy improved mean serum ALT from 165 ± 80 U/L to 89 ± 62 U/L after 12 months mean duration of treatment. One patient who completed 24 months of the combined therapy demonstrated a decrease in liver stiffness from 8.9 kPa to 5.6 kPa, as assessed by FibroScan elastography. There was a significant increase in body weight during this time, however, body mass index as a percentage of the 95 th percentile adjusted for age and gender did not increase significantly, 151 ± 29% vs. 152 ± 28%. Moreover, waist circumference, mid-upper arm circumference, percent body fat, and muscle mass were not significantly different before and after treatment. Serum lipid levels and hemoglobin A1c also did not change with the treatment. CONCLUSION In summary, this case series provides encouraging results about the efficacy of the combined pioglitazone and topiramate therapy for the management of adolescents with severe MASLD, which should be further explored in clinical studies.
Collapse
Affiliation(s)
- Callen Conroy
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Aurelia Radulescu
- Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children’s Hospital, Lexington, KY, USA
| | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine and Kentucky Children’s Hospital, Lexington, Kentucky, USA
| | - Nathan Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - James T. Lee
- Abdominal and Emergency Radiology Divisions, Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Roberto Galuppo Monticelli
- Department of Radiology-Division of Vascular and Interventional Radiology, University of Kentucky, Lexington, KY, USA
| | - Sara Hall
- Department of Anesthesiology, University of Kentucky HealthCare, Lexington, KY, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Samir Softic
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine and Kentucky Children’s Hospital, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Kirby A, Graf D, Suchý M, Calvert ND, Charlton TA, Ben RN, Addison CL, Shuhendler A. It's a Trap! Aldolase-Prescribed C 4 Deoxyradiofluorination Affords Intracellular Trapping and the Tracing of Fructose Metabolism by PET. J Nucl Med 2024; 65:475-480. [PMID: 38272705 DOI: 10.2967/jnumed.123.266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.
Collapse
Affiliation(s)
- Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic Graf
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Mojmír Suchý
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert N Ben
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina L Addison
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Adam Shuhendler
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Li S, Guo L. The role of Sirtuin 2 in liver - An extensive and complex biological process. Life Sci 2024; 339:122431. [PMID: 38242495 DOI: 10.1016/j.lfs.2024.122431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Liver disease has become one of the main causes of health issue worldwide. Sirtuin (Sirt) 2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and is expressed in multiple organs including liver, which plays important and complex roles by interacting with various substrates. Physiologically, Sirt2 can improve metabolic homeostasis. Pathologically, Sirt2 can alleviate inflammation, endoplasmic reticulum (ER) stress, promote liver regeneration, maintain iron homeostasis, aggravate fibrogenesis and regulate oxidative stress in liver. In liver diseases, Sirt2 can mitigate fatty liver disease (FLD) including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), but aggravate hepatitis B (HBV) and liver ischemia-reperfusion injury (LIRI). The role of Sirt2 in liver cancer and aging-related liver diseases, however, has not been fully elucidated. In this review, these biological processes regulated by Sirt2 in liver are summarized, which aims to update the function of Sirt2 in liver and to explore the potential role of Sirt2 as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China.
| |
Collapse
|
22
|
Hong JG, Carbajal Y, Trotman J, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Friedman SL, DeRossi C, Chu J. Mannose Supplementation Curbs Liver Steatosis and Fibrosis in Murine MASH by Inhibiting Fructose Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576067. [PMID: 38293175 PMCID: PMC10827199 DOI: 10.1101/2024.01.17.576067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) can progress to cirrhosis and liver cancer. There are no approved medical therapies to prevent or reverse disease progression. Fructose and its metabolism in the liver play integral roles in MASH pathogenesis and progression. Here we focus on mannose, a simple sugar, which dampens hepatic stellate cell activation and mitigates alcoholic liver disease in vitro and in vivo . In the well-validated FAT-MASH murine model, oral mannose supplementation improved both liver steatosis and fibrosis at low and high doses, whether administered either at the onset of the model ("Prevention") or at week 6 of the 12-week MASH regimen ("Reversal"). The in vivo anti-fibrotic effects of mannose supplementation were validated in a second model of carbon tetrachloride-induced liver fibrosis. In vitro human and mouse primary hepatocytes revealed that the anti-steatotic effects of mannose are dependent on the presence of fructose, which attenuates expression of ketohexokinase (KHK), the main enzyme in fructolysis. KHK is decreased with mannose supplementation in vivo and in vitro, and overexpression of KHK abrogated the anti-steatotic effects of mannose. Our study identifies mannose as a simple, novel therapeutic candidate for MASH that mitigates metabolic dysregulation and exerts anti-fibrotic effects.
Collapse
|
23
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
24
|
Deng Y, Liu X, Xie M, Zhao R, Ji L, Tang K, Yang W, Ou W, Xie M, Li T. Obesity Enables NLRP3 Activation and Induces Myocardial Fibrosis via Hyperacetylation of HADHa. Diabetes 2023; 72:1597-1608. [PMID: 37625146 DOI: 10.2337/db23-0264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Obesity increases the risk of myocardial fibrosis, a pathological change in most heart diseases, but the mechanism has not been fully elucidated. Here, we found that mice with high-fat diet-induced obesity had more severe myocardial fibrosis than control mice under normal and ischemia/reperfusion (I/R) conditions, which could be alleviated by neutralizing antibodies against interleukin (IL)-1β and IL-18, downstream products of the nucleotide-binding oligomerization-like receptor protein 3 (NLRP3) inflammasome, and the NLRP3 inhibitor MCC950. Mechanistically, mitochondrial hyperacetylation in obese mouse hearts recruited apoptosis-associated speck-like protein containing a CARD (ASC) to mitochondria and thus facilitated NLRP3 inflammasome assembly. Acetylation of K255 on hydroxyl-CoA dehydrogenase α subunit (HADHa) was identified to trigger the mitochondrial localization of ASC. Blockade of HADHa-K255 acetylation downregulated mitochondrial ASC, suppressed the NLRP3 inflammasome, and attenuated post-I/R myocardial fibrosis in obese mouse hearts. In obese human patients, the extent of myocardial fibrosis according to T1 MRI was positively correlated with the plasma levels of IL-1β and IL-18, supporting the connection of NLRP3 inflammation to obesity-induced myocardial fibrosis. In conclusion, our study demonstrates that the heart is susceptible to fibrosis under obesity through hyperacetylated HADHa-mediated activation of the NLRP3 inflammasome. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yan Deng
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Xie
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Rui Zhao
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liwei Ji
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Ou
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Maodi Xie
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
26
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
27
|
Park SH, Helsley RN, Fadhul T, Willoughby JLS, Noetzli L, Tu HC, Solheim MH, Fujisaka S, Pan H, Dreyfuss JM, Bons J, Rose J, King CD, Schilling B, Lusis AJ, Pan C, Gupta M, Kulkarni RN, Fitzgerald K, Kern PA, Divanovic S, Kahn CR, Softic S. Fructose induced KHK-C can increase ER stress independent of its effect on lipogenesis to drive liver disease in diet-induced and genetic models of NAFLD. Metabolism 2023; 145:155591. [PMID: 37230214 PMCID: PMC10752375 DOI: 10.1016/j.metabol.2023.155591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Robert N Helsley
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Taghreed Fadhul
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | - Leila Noetzli
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Marie H Solheim
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Shiho Fujisaka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Bons
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jacob Rose
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christina D King
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Birgit Schilling
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Manoj Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Philip A Kern
- Department of Medicine, Division of Endocrinology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Softic S, Lanaspa MA, DeBosch B. Fructose Metabolism and Metabolic Dysfunction in Adolescents and Young Adults. Nutrients 2023; 15:3162. [PMID: 37513580 PMCID: PMC10383708 DOI: 10.3390/nu15143162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
There is a worldwide epidemic of obesity and its associated metabolic dysfunction [...].
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian DeBosch
- Department of Pediatrics and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|