1
|
Pickering TR, Cazenave M, Clarke RJ, Heile AJ, Caruana MV, Kuman K, Stratford D, Brain CK, Heaton JL. First articulating os coxae, femur, and tibia of a small adult Paranthropus robustus from Member 1 (Hanging Remnant) of the Swartkrans Formation, South Africa. J Hum Evol 2025; 201:103647. [PMID: 40043506 DOI: 10.1016/j.jhevol.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 04/08/2025]
Abstract
Since paleontological work began there in 1948, Swartkrans (South Africa) has yielded hundreds of Early Pleistocene hominin fossils, currently attributed to (in ascending order of quantity) cf. Australopithecus africanus, Homo spp., and Paranthropus robustus. The bulk of that large sample comprises craniodental remains, with (mostly fragmentary) postcranial materials being much less abundant at the site. In that context, our announcement here of the first articulating partial os coxae, nearly complete femur, and complete tibia of a young adult hominin (SWT1/HR-2), excavated from the <2.3 to >1.7-million-year-old Hanging Remnant (Member 1) of the Swartkrans Formation, represents an important addition to the understanding of hominin postural and locomotor behavior in Early Pleistocene South Africa. We provide qualitative and quantitative descriptions and initial functional morphological interpretations of the fossils, based mostly on external bone morphology. Epiphyseal fusion data, element dimensions, the crural index, and live body stature and mass estimates that we provide all indicate that SWT1/HR-2 is one of the smallest known adult hominins in the fossil record. We discuss the paleobiological implications of these findings in relation to our taxonomic diagnosis of SWT1/HR-2 as representing P. robustus.
Collapse
Affiliation(s)
- Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa.
| | - Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany; Division of Anthropology, American Museum of Natural History, New York, 10024, USA; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0084, Pretoria, South Africa
| | - R J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - A J Heile
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew V Caruana
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Palaeo-Research Institute, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - C K Brain
- Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, 0001, South Africa
| | - Jason L Heaton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| |
Collapse
|
2
|
New fossils from Kromdraai and Drimolen, South Africa, and their distinctiveness among Paranthropus robustus. Sci Rep 2022; 12:13956. [PMID: 35977986 PMCID: PMC9385619 DOI: 10.1038/s41598-022-18223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Most fossil hominin species are sampled with spatial, temporal or anatomical biases that can hinder assessments of their paleodiversity, and may not yield genuine evolutionary signals. We use new fossils from the Kromdraai (Unit P) and Drimolen sites (South Africa) to provide insights into the paleodiversity of the Lower Pleistocene robust australopith, Paranthropus robustus. Our focus is the morphology of the temporal bone and the relationships between size and shape (allometry) of the semi-circular canals (SCC), an aspect that has not yet been investigated among southern African australopiths. We find significant size and shape SCC differences between P. robustus from Kromdraai, Drimolen and Swartkrans. This site-related variation is consistent with other differences observed on the temporal bone. P. robustus from Kromdraai Unit P is distinctive because of its smaller temporal bone and SCC, and its proportionally less developed posterior SCC, independently of age and sex. We emphasize the importance of allometry to interpret paleodiversity in P. robustus as either the consequence of differences in body size, or as yet unknown factors. Some features of the inner ear of P. robustus represent directional selection soon after its origin, whereas the size and shape variations described here may result from evolutionary changes.
Collapse
|
3
|
Kuman K, Granger DE, Gibbon RJ, Pickering TR, Caruana MV, Bruxelles L, Clarke RJ, Heaton JL, Stratford D, Brain CK. A new absolute date from Swartkrans Cave for the oldest occurrences of Paranthropus robustus and Oldowan stone tools in South Africa. J Hum Evol 2021; 156:103000. [PMID: 34020297 DOI: 10.1016/j.jhevol.2021.103000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
The Early Pleistocene site of Swartkrans in South Africa's Cradle of Humankind World Heritage Site has been significant for our understanding of the evolution of both early Homo and Paranthropus, as well as the earliest archaeology of southern Africa. Previous attempts to improve a faunal age estimate of the earliest deposit, Member 1, had produced results obtained with uranium-lead dating (U-Pb) on flowstones and cosmogenic burial dating of quartz, which placed the entire member in the range of >1.7/1.8 Ma and <2.3 Ma. In 2014, two simple burial dates for the Lower Bank, the earliest unit within Member 1, narrowed its age to between ca. 1.8 Ma and 2.2 Ma. A new dating program using the isochron method for burial dating has established an absolute age of 2.22 ± 0.09 Ma for a large portion of the Lower Bank, which can now be identified as containing the earliest Oldowan stone tools and fossils of Paranthropus robustus in South Africa. This date agrees within one sigma with the U-Pb age of 2.25 ± 0.08 Ma previously published for the flowstone underlying the Lower Bank and confirms a relatively rapid rate of accumulation for a large portion of the talus.
Collapse
Affiliation(s)
- Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa.
| | - Darryl E Granger
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, IN, 47907, USA.
| | | | - Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Matthew V Caruana
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Laurent Bruxelles
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; TRACES, UMR 5608 du CNRS, 5 allées Antonio Machado, 31058 Toulouse Cedex 09, France; INRAP, French Institute for Preventive Archaeological Researches, 561 rue Etienne Lenoir, km delta, 30900, Nîmes, France
| | - Ronald J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Jason L Heaton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - C K Brain
- Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, 0001, South Africa
| |
Collapse
|
4
|
Rak Y, Kimbel WH, Moggi-Cecchi J, Lockwood CA, Menter C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry), South Africa. J Hum Evol 2020; 151:102913. [PMID: 33388495 DOI: 10.1016/j.jhevol.2020.102913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Although the early hominin species Australopithecus robustus has been known for more than eight decades and is represented by hundreds of fossils from sites in South Africa, a complete, well-preserved skull has been elusive. DNH 7, an adult cranium and mandible from the Drimolen site, was identified, on the basis of its small size, as a presumptive female of A. robustus. Here, we provide a detailed comparative description of the specimen. In cranial, facial, and dental size, DNH 7 is confirmed to lie at the extreme small end of the A. robustus range of variation, along with a few fragmentary maxillofacial specimens from Swartkrans. In addition, relative to the classically derived craniofacial features of the Swartkrans+Kromdraai portions of the A. robustus hypodigm, primitive anatomy pervades the DNH 7 face, braincase, and cranial base. Taken together, these pieces of evidence place DNH 7 in a previously unfilled position on the robust Australopithecus morphocline, where the specimen highlights the morphological distinctions between southern and eastern African species of this group and epitomizes the anatomy expected of the group's last common ancestor.
Collapse
Affiliation(s)
- Yoel Rak
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA
| | - William H Kimbel
- Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ, 85287, USA.
| | - Jacopo Moggi-Cecchi
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| | - Charles A Lockwood
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Colin Menter
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
5
|
Beaudet A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:439-446. [PMID: 31290572 DOI: 10.1002/ajpa.23901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Morphological variation within the southern African hypodigm of Paranthropus has been the focus of major interest since the earliest discoveries in the "Cradle of Humankind." Given the relevance of the bony labyrinth for investigating fossil primate paleobiodiversity, this article aims to provide additional evidence for assessing the degree of regional variation within Paranthropus through the comparative analysis of the inner ear of DNH 22. MATERIALS AND METHODS As comparative material, 18 southern African hominin specimens from Sterkfontein, Swartkrans, and Makapansgat (plus published data from Kromdraai B), attributed to Australopithecus, early Homo or Paranthropus, as well as 10 extant human and 10 extant common chimpanzee specimens are investigated. A landmark-based geometric morphometric method is applied for quantitatively assessing labyrinthine morphology. Additionally, cochlear parameters and oval window area are measured. RESULTS In terms of semicircular canal and cochlear shape, DNH 22 most resembles the Paranthropus specimen SKW 18 from Swartkrans. Both specimens differ from the other Paranthropus specimens investigated in this study by an anteroposteriorly large posterior semicircular canal and a cochlea with loose turns in the apical portion. Conversely, the oval window area in DNH 22 closely fits the range observed in Paranthropus from Swartkrans and Kromdraai B. DISCUSSION The inner ear of the DNH 22 specimen represents a unique opportunity to provide further insight into the early hominin labyrinthine variation pattern. In particular, the description of DNH 22 raises critical questions on the diversity of the vestibular system and evolutionary pattern of the auditory apparatus in Paranthropus.
Collapse
Affiliation(s)
- Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Braga J, Zimmer V, Dumoncel J, Samir C, de Beer F, Zanolli C, Pinto D, Rohlf FJ, Grine FE. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J Hum Evol 2019; 130:21-35. [PMID: 31010541 DOI: 10.1016/j.jhevol.2019.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Veronika Zimmer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Biomedical Engineering, King's College London, London, UK.
| | - Jean Dumoncel
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Chafik Samir
- LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France.
| | - Frikkie de Beer
- South African Nuclear Energy Corporation (NECSA), Pelindaba, North West Province, South Africa.
| | - Clément Zanolli
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Deborah Pinto
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - F James Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Adams JW. Fossil mammals from the Gondolin Dump A ex situ hominin deposits, South Africa. PeerJ 2018; 6:e5393. [PMID: 30123713 PMCID: PMC6084286 DOI: 10.7717/peerj.5393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
The Gondolin palaeokarstic system, located in the UNESCO Fossil Hominids of South Africa World Heritage Site, has been sporadically excavated since the 1970s. Sampling of ex situ dumpsites in 1997 recovered the only two fossil hominin specimens recovered thus far from Gondolin. While one partial mandibular molar (GA 1) remains unattributed, the complete mandibular second molar (GA 2) represents the largest Paranthropus robustus Broom, 1938 tooth identified to date. While subsequent excavations and research at Gondolin has clarified the geological, temporal, taphonomic, and palaeoecologic context for the in situ deposits, this paper presents the first comprehensive description of the fossil assemblage 'associated' with the two ex situ hominins. Analysis of 42 calcified sediment blocks and naturally decalcified sediments excavated from three cubic metres of the Dump A deposits reinforce that the dump contains a heterogeneous aggregation of materials from across the Gondolin sedimentary deposits. A total of 15,250 individual fossil specimens were processed (via sifting or acetic-acid mediated processing of calcified sediment blocks), yielding a faunal record that largely mirrors that described from either (or both) the GD 1 and GD 2 in situ assemblages but includes representatives of four novel mammal groups (Families Cercopithecidae, Felidae, Herpestidae, Giraffidae) not recorded in either in situ sample. While basic assemblage characteristics including primary taphonomic data is presented, analysis and interpretation is limited by the ex situ origin of the sample. Ultimately, these results reinforce that the substantial mining-mediated obliteration of palaeokarstic deposits at Gondolin continue to obscure a clear association between the Gondolin Dump A hominins and any of the sampled and dated in situ deposits.
Collapse
Affiliation(s)
- Justin W. Adams
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Pickering TR, Heaton JL, Sutton MB, Clarke RJ, Kuman K, Senjem JH, Brain C. New early Pleistocene hominin teeth from the Swartkrans Formation, South Africa. J Hum Evol 2016; 100:1-15. [DOI: 10.1016/j.jhevol.2016.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 10/20/2022]
|
9
|
Leece AB, Kegley ADT, Lacruz RS, Herries AIR, Hemingway J, Kgasi L, Potze S, Adams JW. The first hominin from the early Pleistocene paleocave of Haasgat, South Africa. PeerJ 2016; 4:e2024. [PMID: 27190720 PMCID: PMC4867710 DOI: 10.7717/peerj.2024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/19/2016] [Indexed: 11/29/2022] Open
Abstract
Haasgat is a primate-rich fossil locality in the northeastern part of the Fossil Hominid Sites of South Africa UNESCO World Heritage Site. Here we report the first hominin identified from Haasgat, a partial maxillary molar (HGT 500), that was recovered from an ex situ calcified sediment block sampled from the locality. The in situ fossil bearing deposits of the Haasgat paleokarstic deposits are estimated to date to slightly older than 1.95 Ma based on magnetobiostratigraphy. This places the hominin specimen at a critical time period in South Africa that marks the last occurrence of Australopithecus around 1.98 Ma and the first evidence of Paranthropus and Homo in the region between ∼2.0 and 1.8 Ma. A comprehensive morphological evaluation of the Haasgat hominin molar was conducted against the current South African catalogue of hominin dental remains and imaging analyses using micro-CT, electron and confocal microscopy. The preserved occlusal morphology is most similar to Australopithecus africanus or early Homo specimens but different from Paranthropus. Occlusal linear enamel thickness measured from micro-CT scans provides an average of ∼2.0 mm consistent with Australopithecus and early Homo. Analysis of the enamel microstructure suggests an estimated periodicity of 7–9 days. Hunter–Schreger bands appear long and straight as in some Paranthropus, but contrast with this genus in the short shape of the striae of Retzius. Taken together, these data suggests that the maxillary fragment recovered from Haasgat best fits within the Australopithecus—early Homo hypodigms to the exclusion of the genus Paranthropus. At ∼1.95 Ma this specimen would either represent another example of late occurring Australopithecus or one of the earliest examples of Homo in the region. While the identification of this first hominin specimen from Haasgat is not unexpected given the composition of other South African penecontemporaneous site deposits, it represents one of the few hominin localities in the topographically-distinct northern World Heritage Site. When coupled with the substantial differences in the mammalian faunal communities between the northern localities (e.g., Haasgat, Gondolin) and well-sampled Bloubank Valley sites (e.g., Sterkfontein, Swartkrans, Kromdraai), the recovery of the HGT 500 specimen highlights the potential for further research at the Haasgat locality for understanding the distribution and interactions of hominin populations across the landscape, ecosystems and fossil mammalian communities of early Pleistocene South Africa. Such contextual data from sites like Haasgat is critical for understanding the transition in hominin representation at ∼2 Ma sites in the region from Australopithecus to Paranthropus and early Homo.
Collapse
Affiliation(s)
- A B Leece
- The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Anthony D T Kegley
- Department of Biomedical Sciences, Grand Valley State University , Allendale, MI , United States of America
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University , New York, NY , United States of America
| | - Andy I R Herries
- The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia; Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Lazarus Kgasi
- Plio-Pleistocene Section, Department of Vertebrates, Ditsong National Museum of Natural History , Pretoria , South Africa
| | - Stephany Potze
- Plio-Pleistocene Section, Department of Vertebrates, Ditsong National Museum of Natural History , Pretoria , South Africa
| | - Justin W Adams
- Department of Anatomy and Developmental Biology, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
10
|
Grine FE. The Late Quaternary Hominins of Africa: The Skeletal Evidence from MIS 6-2. AFRICA FROM MIS 6-2 2016. [DOI: 10.1007/978-94-017-7520-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Microbial osteolysis in an Early Pleistocene hominin (Paranthropus robustus) from Swartkrans, South Africa. J Hum Evol 2015; 85:126-35. [DOI: 10.1016/j.jhevol.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023]
|
12
|
Herries AI, Adams JW. Clarifying the context, dating and age range of the Gondolin hominins and Paranthropus in South Africa. J Hum Evol 2013; 65:676-81. [DOI: 10.1016/j.jhevol.2013.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/15/2022]
|