1
|
Zanolli C, Hublin JJ, Kullmer O, Schrenk F, Kgasi L, Tawane M, Xing S. Taxonomic revision of the SK 15 mandible based on bone and tooth structural organization. J Hum Evol 2025; 200:103634. [PMID: 39752989 DOI: 10.1016/j.jhevol.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
The hominin mandible SK 15 was discovered in April 1949 in Swartkrans Member 2, dated to ∼1.4 Ma. Albeit distorted on the right side, the left and right corpus of SK 15 are relatively low and thick, even compared to most Early to Middle Pleistocene Homo specimens. It preserves the left molar row and the right M2 and M3 that show a distalward increase in mesiodistal diameter. SK 15 was originally attributed to Telanthropus capensis but is now generally attributed to Homo erectus/Homo ergaster, even if it was previously suggested to possibly belong to Australopithecus. Similarities between SK 15 and Homo naledi mandible and tooth morphology were also claimed. To clarify the taxonomy of SK 15, we used X-ray microtomography to investigate aspects of bone and tooth structural organization. Geometric morphometric analyses of the dental arcade shape, mandible symphysis outline, and the M2 and M3 enamel-dentine junction shape were conducted. For mandibular symphysis shape, SK 15 exhibits an australopith signal, whereas for both the dental arcade and enamel-dentine junction analyses, the specimen is statistically classified as Paranthropus. Altogether, the results show that SK 15 unambiguously falls outside the variation of H. erectus/H. ergaster and that it is most compatible with the morphology of Paranthropus, albeit showing smaller dimensions and an absence of some dental morphological features (e.g., developed protostylid, distally tapering M3, short molar roots) typically found in specimens of Paranthropus aethiopicus, Paranthropus boisei, and Paranthropus robustus. In particular, SK 15 differs markedly in size and morphology from mandibular remains of P. robustus from Swartkrans Member 2. We thus tentatively attribute SK 15 to Paranthropus capensis, a more gracile species of Paranthropus than the other three currently recognized species of this genus and discuss the implications for the existence of another species of Paranthropus in southern Africa during the Early Pleistocene.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac F-33600, France; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, Johannesburg 2000, South Africa.
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, 11, Place Marcelin-Berthelot, Cedex 05, Paris 75231, France
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedemann Schrenk
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Lazarus Kgasi
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa; Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
2
|
Skinner MF, Delezene LK, Skinner MM, Mahoney P. Linear enamel hypoplasia in Homo naledi reappraised in light of new Retzius periodicities. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24927. [PMID: 38433613 DOI: 10.1002/ajpa.24927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Among low-latitude apes, developmental defects of enamel often recur twice yearly, linkable to environmental cycles. Surprisingly, teeth of Homo naledi from Rising Star in South Africa (241-335 kya), a higher latitude site with today a single rainy season, also exhibit bimodally distributed hypoplastic enamel defects, but with uncertain timing and etiology. Newly determined Retzius periodicities for enamel formation in this taxon enable a reconstruction of the temporal patterning of childhood stress. METHODS Using high resolution casts of 31 isolated anterior teeth from H. naledi, 82 enamel defects (linear enamel hypoplasia [LEH]) were identified. Seventeen teeth are assigned to three individuals. Perikymata in the occlusal wall of enamel furrows and between the onsets of successive LEH were visualized with scanning electron microscopy and counted. Defects were measured with an optical scanner. Conversion of perikymata counts to estimates of LEH duration and inter-LEH interval draws upon Retzius periodicities of 9 and 11 days. RESULTS Anterior teeth record more than a year of developmental distress, expressed as two asymmetric intervals centered on 4.5 and 7.5 months bounded by three LEH. Durations, also, show bimodal distributions, lasting 3 or 12 weeks. Short duration LEH are more severe than long duration. Relative incisor/canine rates of formation are indistinguishable from modern humans. DISCUSSION We invoke a disease and dearth model, with short episodes of distress reflecting onset of disease in young infants, lasting about 3 weeks, followed by a season of undernutrition, possibly intensified by secondary plant compounds, spanning about 12 weeks, inferably coincident with austral winter.
Collapse
Affiliation(s)
- Mark Fretson Skinner
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lucas Kyle Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Delezene LK, Scott JE, Irish JD, Villaseñor A, Skinner MM, Hawks J, Berger LR. Sex-biased sampling may influence Homo naledi tooth size variation. J Hum Evol 2024; 187:103490. [PMID: 38266614 DOI: 10.1016/j.jhevol.2023.103490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa.
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison. Madison, WI, 53706, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; National Geographic Society, 1145 17th Street NW, Washington DC, 20036, USA
| |
Collapse
|
5
|
Brophy JK, Bolter DR, Elliott M, Hawks J, Berger LR. An examination of Homo naledi early juveniles recovered from the Rising Star cave system, South Africa. Ann Hum Biol 2024; 51:2321128. [PMID: 38509686 DOI: 10.1080/03014460.2024.2321128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.
Collapse
Affiliation(s)
- Juliet K Brophy
- Department of Geography and Anthropology, LA State University, Baton Rouge, LA, USA
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Debra R Bolter
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Modesto Junior College, Modesto, CA, USA
- Department of Anthropology, CA State University Stanislaus, Turlock, CA, USA
| | - Marina Elliott
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| | - John Hawks
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of WI-Madison, Madison, WI, USA
| | - Lee R Berger
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|