1
|
Ma ESK, Wong SC, Cheng VCC, Chen H, Wu P. Lessons Learned from COVID-19 Pandemic in Combating Antimicrobial Resistance-Experience of Hong Kong, China. Microorganisms 2024; 12:2635. [PMID: 39770837 PMCID: PMC11678779 DOI: 10.3390/microorganisms12122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The world has gone through the COVID-19 pandemic and has now returned to normalcy. We reviewed the strategies and public health actions conducted in Hong Kong during the COVID-19 pandemic, and reflected on the lessons learned, which are potentially useful in the fight against antimicrobial resistance (AMR). We recommended extending wastewater surveillance for AMR, apart from SARS-CoV2. We suggested exploring the use of rapid tests in outpatients to aid clinical diagnosis and reduce antibiotic use for viral infections. Stringent infection control measures are crucial to prevent nosocomial transmission of resistant microorganisms, such as vancomycin-resistant enterococci and carbapenemase-producing Enterobacterales in hospitals and in elderly homes. Taking COVID-19 experiences as a reference, transparent data, the prompt dissemination of information, and strategic risk communication should be adopted to maintain sustained behavioral changes in AMR. We also encouraged the adoption of information technology, artificial intelligence, and machine learning in antimicrobial stewardship programs. We also discussed the potential merits and limitations of these strategies. The lessons learned from the COVID-19 pandemic may provide insights into the long battle against AMR.
Collapse
Affiliation(s)
- Edmond Siu-Keung Ma
- Infection Control Branch, Centre for Health Protection, Department of Health, Hong Kong, China;
| | - Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong, China; (S.-C.W.); (V.C.-C.C.)
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Chung Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong, China; (S.-C.W.); (V.C.-C.C.)
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
| | - Hong Chen
- Infection Control Branch, Centre for Health Protection, Department of Health, Hong Kong, China;
| | - Peng Wu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
2
|
Di Lorenzo A, Triggiano F, Lopuzzo M, Piccolomo L, Triggiani M, Grasso S, Stefanizzi P, Tafuri S, Dalfino L, Caggiano G. Candida auris cluster in a large third level Italian hospital: a case series. IJID REGIONS 2024; 13:100468. [PMID: 39507392 PMCID: PMC11539118 DOI: 10.1016/j.ijregi.2024.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Objectives Candida auris has been circulating since 2019 in Northern and Middle-Italy regions. Design This report details the first three cases of C. auris isolation in Puglia (Southern Italy), which occurred as a nosocomial outbreak. Results The first C. auris specimen was isolated on April 19, 2024 from a blood culture obtained from a 55-year-old male (GM) in an intensive care unit (ICU) of Bari Policlinico General Hospital. The patient had been admitted on April 06, 2024 due to subarachnoid hemorrhage. On April 12, 2024, a blood sample tested positive for multidrug-resistant Klebsiella pneumoniae, requiring isolation and wide-spectrum antibiotic therapy. Exitus occurred on April 17, 2024, but 2 days later, a pre-mortem blood sample tested positive for C. auris, leading to epidemiologic investigation in the whole ICU.A second case was therefore identified (SD), a 36-year-old male admitted on March 21, 2024, shortly after undergoing a dental procedure in Tirana (Albania). Due to the timing of admission, he was identified as the index case.A third case was later found on April 29, 2024 (CM), a 52-year-old woman with a history of acute myeloid leukemia located in the same ICU but on a different floor.A link of transmission was identified via environmental sampling, as the medics' common telephone tested positive for C. auris contamination. Conclusion The pathogen's circulation has shown to be inapparent and difficult to track, making it a potential threat even for facilities outside of known high-risk geographical areas. ICUs should be monitored routinely.
Collapse
Affiliation(s)
- Antonio Di Lorenzo
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Triggiano
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Lopuzzo
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Piccolomo
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Triggiani
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Salvatore Grasso
- Department of Emergency and Organ Transplantation, Anesthesia and Intensive Care Unit, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Silvio Tafuri
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Lidia Dalfino
- Department of Emergency and Organ Transplantation, Anesthesia and Intensive Care Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Lionakis MS, Chowdhary A. Candida auris Infections. N Engl J Med 2024; 391:1924-1935. [PMID: 39565991 DOI: 10.1056/nejmra2402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (M.S.L.); and the Medical Mycology Unit, Department of Microbiology, and the National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India (A.C.)
| | - Anuradha Chowdhary
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (M.S.L.); and the Medical Mycology Unit, Department of Microbiology, and the National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India (A.C.)
| |
Collapse
|
4
|
Wong SC, Chen JH, Kwok MO, Siu CY, Yuen LL, AuYeung CH, Li CK, Li BH, Chan BW, So SY, Chiu KH, Yuen KY, Cheng VC. Air dispersal of multi-drug-resistant organisms including meticillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales in general wards: surveillance culture of air grilles. J Hosp Infect 2024; 149:26-35. [PMID: 38705476 DOI: 10.1016/j.jhin.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The environmental surveillance of air grilles in clinical areas has not been systematically analysed. METHODS Samples were collected from frequently touched items (N = 529), air supply (N = 295) and exhaust (N = 184) grilles in six medical and 11 surgical wards for the cultures of multi-drug-resistant organisms (MDROs): meticillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenemase-producing Enterobacterales (CPE), and isolates were selected for whole-genome sequencing (WGS). The contamination rates were correlated with the colonization pressures of the respective MDROs. RESULTS From 3rd October to 21st November 2023, 9.8% (99/1008) of the samples tested positive, with MRSA (24.2%, 24/99), CRAB (59.6%, 59/99) and CPE (2.0%, 2/99), being the only detected MDROs. The contamination rate in air exhaust grilles (26.6%, 49/184) was significantly higher than in air supply grilles (5.8%, 17/295; P<0.001). The contamination rate of air exhaust grilles with any MDRO in acute medical wards (73.7%, 14/19) was significantly higher than in surgical wards (12.5%, 4/32; P<0.001). However, there was no difference in the contamination rate of air exhaust grilles between those located inside and outside the cohort cubicles for MDROs (27.1%, 13/48 vs 28.8%, 30/104; P=0.823). Nevertheless, the weekly CRAB colonization pressure showed a significant correlation with the overall environmental contamination rate (r = 0.878; 95% confidence interval (CI): 0.136-0.986; P=0.004), as well as with the contamination rate in air supply grilles (r = 0.960; 95% CI: 0.375-0.999; P<0.001) and air exhaust grilles (r = 0.850; 95% CI: 0.401-0.980; P=0.008). WGS demonstrated clonal relatedness of isolates collected from patients and air exhaust grilles. CONCLUSIONS Air grilles may serve as MDRO reservoirs. Cohort nursing in open cubicles may not completely prevent MDRO transmission through air dispersal, prompting the consideration of future hospital design.
Collapse
Affiliation(s)
- S C Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - J H Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - M O Kwok
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C Y Siu
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - L L Yuen
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C H AuYeung
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C K Li
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - B H Li
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - B W Chan
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - S Y So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - K H Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - K Y Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - V C Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Feng J, Chen J, Du B, Cui X, Xia Y, Xue G, Feng Y, Ke Y, Zhao H, Cui J, Yan C, Gan L, Fan Z, Fu T, Xu Z, Yang Y, Yu Z, Huang L, Zhao S, Tian Z, Ding Z, Chen Y, Li Z, Yuan J. Development of a Recombinase-Aided Amplification Assay for the Rapid Detection of Candida auris. Anal Chem 2024; 96:9424-9429. [PMID: 38825761 DOI: 10.1021/acs.analchem.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/μL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.
Collapse
Affiliation(s)
- Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinfeng Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuyan Xia
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuo Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zanbo Ding
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujie Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| |
Collapse
|
6
|
Silva I, Miranda IM, Costa-de-Oliveira S. Potential Environmental Reservoirs of Candida auris: A Systematic Review. J Fungi (Basel) 2024; 10:336. [PMID: 38786691 PMCID: PMC11122228 DOI: 10.3390/jof10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Candida auris, a multidrug-resistant yeast, poses significant challenges in healthcare settings worldwide. Understanding its environmental reservoirs is crucial for effective control strategies. This systematic review aimed to review the literature regarding the natural and environmental reservoirs of C. auris. Following the PRISMA guidelines, published studies until October 2023 were searched in three databases: PubMed, Web of Science, and Scopus. Information regarding the origin, sampling procedure, methods for laboratory identification, and antifungal susceptibility was collected and analyzed. Thirty-three studies published between 2016 and 2023 in 15 countries were included and analyzed. C. auris was detected in various environments, including wastewater treatment plants, hospital patient care surfaces, and natural environments such as salt marshes, sand, seawater, estuaries, apples, and dogs. Detection methods varied, with molecular techniques often used alongside culture. Susceptibility profiles revealed resistance patterns. Phylogenetic studies highlight the potential of environmental strains to influence clinical infections. Despite methodological heterogeneity, this review provides valuable information for future research and highlights the need for standardized sampling and detection protocols to mitigate C. auris transmission.
Collapse
Affiliation(s)
- Isabel Silva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel M. Miranda
- Cardiovascular R&D Centre UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Wong SC, Chau PH, Chen H, So SYC, Chiu KHY, Chen JHK, Li X, Chui CSL, Yuen KY, Cheng VCC. The Emergence of Candida auris is Not Associated with Changes in Antifungal Prescription at Hospitals. Infect Drug Resist 2024; 17:1419-1429. [PMID: 38623528 PMCID: PMC11018130 DOI: 10.2147/idr.s451742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose This study describes the emergence of Candida auris in Hong Kong, focusing on the incidence and trends of different Candida species over time. Additionally, the study analyzes the relationship between C. auris and antifungal prescription, as well as the impact of outbreaks caused by C. auris. Patients and Methods Data were collected from 43 public hospitals across seven healthcare networks (A to G) in Hong Kong, including Candida species culture and antifungal prescription information. Among 150,267 patients with 206,405 hospitalization episodes, 371,653 specimens tested positive for Candida species. Trends in Candida species and antifungal prescription were analyzed before (period 1: 2015 1Q to 2019 1Q) and after (period 2: 2019 2Q to 2023 2Q) the emergence of C. auris in Hong Kong. Results Candida albicans was the most prevalent species, accounting for 57.1% (212,163/371,653) of isolations, followed by Candida glabrata (13.1%, 48,666), Candida tropicalis (9.2%, 34,261), and Candida parapsilosis (5.3%, 19,688). C. auris represented 2.0% of all Candida species isolations. Comparing period 2 to period 1, the trend of C. albicans remained stable, while C. glabrata, C. tropicalis, and C. parapsilosis demonstrated a slower increasing trend in period 2 than in period 1. Other species, including C. auris, exhibited a 1.1% faster increase in trend during period 2 compared to period 1. Network A, with the highest antifungal prescription, did not experience any outbreaks, while networks F and G had 40 hospital outbreaks due to C. auris in period 2. Throughout the study period, healthcare networks B to G had significantly lower antifungal prescription compared to network A, ranging from 54% to 78% less than that of network A. Conclusion There is no evidence showing correlation between the emergence of C. auris and antifungal prescription in Hong Kong. Proactive infection control measures should be implemented to prevent nosocomial transmission and outbreak of C. auris.
Collapse
Affiliation(s)
- Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, People’s Republic of China
| | - Pui-Hing Chau
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hong Chen
- Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, People’s Republic of China
| | - Simon Yung-Chun So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xin Li
- School of Clinical Medicine, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Celine Sze-Ling Chui
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- School of Clinical Medicine, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Vincent Chi-Chung Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|