1
|
Van Gheem J, Rounds A, Blackwood T, Cox C, Hernandez EJ, McKee D, MacKay B. Case Series of Traumatic Peripheral Nerve Injuries in Pediatric Patients Treated with Allograft Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:801-807. [PMID: 39703582 PMCID: PMC11652274 DOI: 10.1016/j.jhsg.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 12/21/2024] Open
Abstract
Purpose In the adult literature, allograft reconstruction of gapped peripheral nerve injuries has gained popularity over autologous nerve grafting. Allografts have demonstrated similar recovery while eliminating donor site morbidity. There is no well-defined incidence or treatment of such injuries in children. Our study explores the epidemiology and outcomes of traumatic pediatric peripheral nerve injuries treated with allograft. Methods This is a retrospective case series of a prospectively maintained database of all pediatric patients who underwent nerve allograft reconstruction at a Level I trauma center between September 2011 and July 2021. Results We identified 24 allograft nerve reconstructions in 18 patients, average age 12.9 years (range 1.5-17.0) and 78% male. Five patients (28%) were injured in a motor vehicle accident, and four were injured by sharp laceration, machinery, and blast injury (22%). The most injured nerve was digital (n = 10, 42%) followed by 8 (33%) ulnar, and 4 (17%) median. The average gap length was 30.3 ± 23.8 mm (range 4-87 mm). Fifteen nerves were repaired within 24 hours (63%). Average follow-up was 13.7 ± 14.5 months (range 1.6-46.8 months). At final follow-up, 9 (38%) had full sensory recovery, 6 (25%) protective sensation, 2 (8%) deep pressure, and 1 (4%) no sensation but a positive Tinel's sign. Conclusions Allograft reconstruction is a viable option for the treatment of traumatic pediatric peripheral nerve injuries with gaps not amenable to direct repair. Type of study/level of evidence Therapeutic IV.
Collapse
Affiliation(s)
- Jacqueline Van Gheem
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Alexis Rounds
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Taylor Blackwood
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Cameron Cox
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Evan J. Hernandez
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Desirae McKee
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Brendan MacKay
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| |
Collapse
|
2
|
Clifford AL, Klifto CS, Li NY. Nerve Coaptation in 2023: Adjuncts to Nerve Repair Beyond Suture. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:705-710. [PMID: 39381375 PMCID: PMC11456665 DOI: 10.1016/j.jhsg.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Effective nerve coaptation entails tensionless repair of healthy fascicles with intact fascicular architecture and a well-vascularized environment, supportive of the regenerative cellular behaviors of neurons, immune cells, and Schwann cells. Suture coaptations have historically been used to ensure that these criteria are met for end-to-end repair, nerve transfers, and allograft or autograft reconstructions; however, unfortunately, overall restoration of function remains poor. As optimal coaptation is required for return of sensorimotor function, adjunct biomaterials are increasingly being enlisted attempting to optimize these suture-based coaptations. The purpose of this review was to discuss the biological, preclinical, and clinical data for the use of fibrin glue and nerve wraps made of type 1 collagen, porcine small intestine submucosa, chitosan, and human amniotic membrane. This study provides available data on each material's ability to optimize the regenerative potential of nerve repair as well as available outcomes data. Although each biomaterial discussed has benefits to nerve regeneration, at large, data remain heterogeneous, and continued investigation is required to fully understand the specific mechanisms involved and the long-term potential clinical impacts each can provide for improvement of sensorimotor outcomes.
Collapse
Affiliation(s)
| | | | - Neill Y. Li
- Department of Orthopaedic Surgery, Duke University, Durham, NC
| |
Collapse
|
3
|
Wong GC, Chung KC. Bioengineered Nerve Conduits and Wraps. Hand Clin 2024; 40:379-387. [PMID: 38972682 DOI: 10.1016/j.hcl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.
Collapse
Affiliation(s)
- Gordon C Wong
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA
| | - Kevin C Chung
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
5
|
Zhukauskas R, Fischer DN, Deister C, Faleris J, Marquez-Vilendrer SB, Mercer D. Histological Comparison of Porcine Small Intestine Submucosa and Bovine Type-I Collagen Conduit for Nerve Repair in a Rat Model. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023; 5:810-817. [PMID: 38106932 PMCID: PMC10721507 DOI: 10.1016/j.jhsg.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/15/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose After nerve injury, macrophages and Schwann cells remove axon and myelin debris. We hypothesized that nerves repaired with different conduit materials will result in varying levels of these cell populations, which impacts Wallerian degeneration and axonal regeneration. Methods We performed a unilateral sciatic nerve transection in 18 rats. The nerves were repaired with small intestine submucosa (SIS, n = 9) or isolated type-I collagen (CLC, n = 9) conduits. Rats were monitored for 4 weeks. Histology samples were obtained from the proximal nerve, mid-implant, and distal nerve regions. Samples were stained for total macrophages, M2 macrophages, foamy phagocytes, Schwann cells, vascular components, axon components, and collagen density. Results Distal nerve analyses showed higher populations of total macrophages and M2 macrophages in SIS-repaired nerves and higher density of foamy phagocytes in CLC-repaired nerves. Proximal nerve, mid-implant, and distal nerve analyses showed higher Schwann cell and vascular component densities in SIS-repaired nerves. Axon density was higher in the mid-implant region of SIS-repaired nerves. Collagen staining in the mid-implant was scant, but less collagen density was observed in SIS-repaired versus CLC-repaired nerves. Conclusions In the distal nerve, the following were observed: (1) lower total macrophages in CLC-repaired nerves, suggesting lower overall inflammation versus SIS-repaired nerves; (2) higher M2 macrophages in SIS-repaired versus CLC-repaired nerves, a driving factor for higher total macrophages and indicative of an inflammation resolution response in SIS-repaired nerves; and (3) a lower foamy phagocyte density in SIS-repaired nerves, suggesting earlier resolution of Wallerian degeneration versus CLC-repaired nerves. In the proximal nerve, mid-implant, and distal nerve, higher Schwann cell and vascular component densities were noted in SIS-repaired nerves. In the mid-implant, a higher axon component density and a lower collagen density of the SIS-repaired nerves versus CLC-repaired nerves were noted. These results indicate more robust nerve regeneration with less collagen deposition. Clinical relevance This in vivo study evaluated two common conduit materials that are used in peripheral nerve repair. Clinical outcomes of nerves repaired with conduits may be impacted by the response to different conduit materials. These nerve repair responses include Wallerian degeneration, nerve regeneration, and nerve scarring. This study evaluated Wallerian degeneration using total macrophages, M2 macrophages, and foamy phagocytes. Nerve regeneration was evaluated using Schwann cells and axons. Nerve scarring was evaluated using vascular and collagen density.
Collapse
|
6
|
Kellaway SC, Roberton V, Jones JN, Loczenski R, Phillips JB, White LJ. Engineered neural tissue made using hydrogels derived from decellularised tissues for the regeneration of peripheral nerves. Acta Biomater 2023; 157:124-136. [PMID: 36494008 DOI: 10.1016/j.actbio.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered neural tissue (EngNT) promotes in vivo axonal regeneration. Decellularised materials (dECM) are complex biologic scaffolds that can improve the cellular environment and also encourage positive tissue remodelling in vivo. We hypothesised that we could incorporate a hydrogel derived from a decellularised tissue (dECMh) into EngNT, thereby providing an alternative to the currently used purified collagen I hydrogel for the first time. Decellularisation was carried out on bone (B-ECM), liver (LIV-ECM), and small intestinal (SIS-ECM) tissues and the resultant dECM was biochemically and mechanically characterised. dECMh differed in mechanical and biochemical properties that likely had an effect on Schwann cell behaviour observed in metabolic activity and contraction profiles. Cellular alignment was observed in tethered moulds within the B-ECM and SIS-ECM derived hydrogels only. No difference was observed in dorsal root ganglia (DRG) neurite extension between the dECMh groups and collagen I groups when applied as a coverslip coating, however, when DRG were seeded atop EngNT constructs, only the B-ECM derived EngNT performed similarly to collagen I derived EngNT. B-ECM EngNT further exhibited similar axonal regeneration to collagen I EngNT in a 10 mm gap rat sciatic nerve injury model after 4 weeks. Our results have shown that various dECMh can be utilised to produce EngNT that can promote neurite extension in vitro and axonal regeneration in vivo. STATEMENT OF SIGNIFICANCE: Nerve autografts are undesirable due to the sacrifice of a patient's own nerve tissue to repair injuries. Engineered neural tissue (EngNT) is a type of living artificial tissue that has been developed to overcome this. To date, only a collagen hydrogel has been shown to be effective in the production and utilisation of EngNT in animal models. Hydrogels may be made from decellularised extracellular matrix derived from many tissues. In this study we showed that hydrogels from various tissues may be used to create EngNT and one was shown to comparable to the currently used collagen based EngNT in a rat sciatic nerve injry model.
Collapse
Affiliation(s)
- Simon C Kellaway
- Centre for Nerve Engineering, University College London, UK; Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Victoria Roberton
- Centre for Nerve Engineering, University College London, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Joshua N Jones
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rabea Loczenski
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James B Phillips
- Centre for Nerve Engineering, University College London, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Lisa J White
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Tang XY, Liu CY, Chu GP, Li XX, Hu K, Zhao P, Lyu GZ. [Effects of porcine urinary bladder matrix on motility and polarization of bone marrow-derived macrophages in mice]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:25-34. [PMID: 36740423 DOI: 10.3760/cma.j.cn501225-20220516-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: To explore the effects of porcine urinary bladder matrix (UBM) on the motility and polarization of bone marrow-derived macrophages in mice, so as to provide evidence for the rational selection of stent in clinical wound repair. Methods: The method of experimental research was used. The microstructure of porcine UBM and absorbable dressing was observed under scanning electron microscope. Polyacrylamide gel electrophoresis was used to observe the protein distribution of the two stent extracts. The primary macrophages were induced from bone marrow-derived cells isolated from six 6-8-week-old male C57BL/6J mice (mouse age, sex, and strain, the same below) and identified. Three batches of macrophages were divided into porcine UBM extract group and absorbable dressing extract group. The cells in each group were cultured with Dulbecco's modified Eagle medium/F12 medium containing the corresponding extracts. The cell migration rate was detected and calculated on 1, 3, and 7 d after scratching by scratch test. The number of migrated cells at 12 and 24 h of culture was detected by Transwell experiment. The percentages of CD206 and CD86 positive cells at 24 h of culture was detected by flow cytometer. The numbers of sample in the above cell experiments were all 3. An incision was prepared on the left and right back of twelve mice, respectively. The left incision of each mouse was included in porcine UBM group and the right incision was included in absorbable dressing group, and the corresponding stents were implanted into the incisions respectively. On post operation day (POD) 7 and 14, the number of inflammatory cells infiltrated in the stent was detected by hematoxylin-eosin staining; the number of F4/80, transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and matrix metalloprotein-9 (MMP-9) positive cells and type Ⅰ collagen deposition in stents were observed by immunohistochemistry; the percentages of F4/80, CD86, and CD206 positive cells were observed by immunofluorescence staining. The numbers of sample in the above animal experiments were all 6. Data were statistically analyzed with analysis of variance for factorial design, analysis of variance for repeated measurement, and independent sample t test. Results: Porcine UBM has a dense basement membrane structure on one side and porous propria containing a fibrous structures on the other. Both sides of the absorbable dressing had three-dimensional porous structure. In the molecular weight range of (50-70)×103, multiple non-type Ⅰ collagen bands appeared in the lanes of porcine UBM extract, while no obvious bands appeared in the lanes of absorbable dressing extract. It had been identified that mouse bone marrow-derived cells had been successfully induced into macrophages. The cell migration rates in porcine UBM extract group were significantly higher than those in absorbable dressing extract group on 1, 3, and 7 d after scratching (with t values of 15.31, 19.76, and 20.58, respectively, P<0.05). The numbers of migrated cells in porcine UBM extract group were significantly more than those in absorbable dressing extract group at 12 and 24 h of culture (with t values of 12.20 and 33.26, respectively, P<0.05). At 24 h of culture, the percentage of CD86 positive cells in porcine UBM extract group ((1.27±0.19)%) was significantly lower than (7.34±0.14)% in absorbable dressing extract group (t=17.03, P<0.05);the percentage of CD206 positive cells in porcine UBM extract group was (73.4±0.7)%, significantly higher than (32.2±0.5)% in absorbable dressing extract group (t=119.10, P<0.05). On POD 7 and 14, the numbers of inflammatory cells infiltrated in the stents in porcine UBM group was significantly more than those in absorbable dressing group (with t values of 6.58 and 10.70, respectively, P<0.05). On POD 7 and 14, the numbers of F4/80, TGF-β1, VEGF, and MMP-9 positive cells in the stents in porcine UBM group were significantly more than those in absorbable dressing group (with t values of 46.11, 40.69, 13.90, 14.15, 19.79, 32.93, 12.16, and 13.21, respectively, P<0.05); type Ⅰ collagen deposition in the stents in porcine UBM group was more pronounced than that in absorbable dressing group; the percentages of CD206 positive cells in the stents in porcine UBM group were significantly higher than those in absorbable dressing group (with t values of 5.05 and 4.13, respectively, P<0.05), while the percentages of CD86 positive cells were significantly lower than those in absorbable dressing group (with t values of 20.90 and 19.64, respectively, P<0.05), and more M2-type macrophages were seen in the stents in porcine UBM group and more M1-type macrophages were seen in the stents in absorbable dressing group. Conclusions: Porcine UBM can enhance macrophage motility, induce M2 polarization and paracrine function, create a microenvironment containing growth factors such as TGF-β1 and MMP-9 tissue remodeling molecules, and promote tissue regeneration and extracellular matrix remodeling in mice.
Collapse
Affiliation(s)
- X Y Tang
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - C Y Liu
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - G P Chu
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - X X Li
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - K Hu
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - P Zhao
- School of Pharmacy, Jiangnan University, Wuxi 214122, China
| | - G Z Lyu
- Treatment Center of Burns and Trauma, the Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther 2022; 13:263. [PMID: 35725660 PMCID: PMC9208168 DOI: 10.1186/s13287-022-02947-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) remain one of the great clinical challenges because of their considerable long-term disability potential. Postnatal neural crest-derived multipotent stem cells, including gingiva-derived mesenchymal stem cells (GMSCs), represent a promising source of seed cells for tissue engineering and regenerative therapy of various disorders, including PNIs. Here, we generated GMSC-repopulated nerve protectors and evaluated their therapeutic effects in a crush injury model of rat sciatic nerves. METHODS GMSCs were mixed in methacrylated collagen and cultured for 48 h, allowing the conversion of GMSCs into Schwann-like cells (GiSCs). The phenotype of GiSCs was verified by fluorescence studies on the expression of Schwann cell markers. GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were co-cultured with THP-1-derived macrophages, and the secretion of anti-inflammatory cytokine IL-10 or inflammatory cytokines TNF-α and IL-1β in the supernatant was determined by ELISA. In addition, GMSCs mixed in the methacrylated collagen were filled into a nerve protector made from the decellularized small intestine submucosal extracellular matrix (SIS-ECM) and cultured for 24 h, allowing the generation of functionalized nerve protectors repopulated with GiSCs. We implanted the nerve protector to wrap the injury site of rat sciatic nerves and performed functional and histological assessments 4 weeks post-surgery. RESULTS GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were directly converted into Schwann-like cells (GiSCs) characterized by the expression of S-100β, p75NTR, BDNF, and GDNF. In vitro, co-culture of GMSCs encapsulated in the 3D-collagen hydrogel with macrophages remarkably increased the secretion of IL-10, an anti-inflammatory cytokine characteristic of pro-regenerative (M2) macrophages, but robustly reduced LPS-stimulated secretion of TNF-1α and IL-1β, two cytokines characteristic of pro-inflammatory (M1) macrophages. In addition, our results indicate that implantation of functionalized nerve protectors repopulated with GiSCs significantly accelerated functional recovery and axonal regeneration of crush-injured rat sciatic nerves accompanied by increased infiltration of pro-regenerative (M2) macrophages while a decreased infiltration of pro-inflammatory (M1) macrophages. CONCLUSIONS Collectively, these findings suggest that Schwann-like cells converted from GMSCs represent a promising source of supportive cells for regenerative therapy of PNI through their dual functions, neurotrophic effects, and immunomodulation of pro-inflammatory (M1)/pro-regenerative (M2) macrophages.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
| | - Justin C. Burrell
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jincheng Zeng
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.410560.60000 0004 1760 3078Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808 China
| | - Faizan I. Motiwala
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - Shihong Shi
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - D. Kacy Cullen
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Anh D. Le
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.411115.10000 0004 0435 0884Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|