1
|
Huang HH, Hargrove LJ, Ortiz-Catalan M, Sensinger JW. Integrating Upper-Limb Prostheses with the Human Body: Technology Advances, Readiness, and Roles in Human-Prosthesis Interaction. Annu Rev Biomed Eng 2024; 26:503-528. [PMID: 38594922 DOI: 10.1146/annurev-bioeng-110222-095816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human-prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.
Collapse
Affiliation(s)
- He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA;
| | - Levi J Hargrove
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Max Ortiz-Catalan
- Medical Bionics Department, University of Melbourne, Melbourne, Australia
- Bionics Institute, Melbourne, Australia
| | - Jonathon W Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada;
| |
Collapse
|
2
|
Qin L, Wang S, Quinn KN, Perkins P, Tuffaha S, Thakor NV. Separation of fascicles for motor unit separability in reinnervated muscles for neuroprosthesis application. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038950 DOI: 10.1109/embc53108.2024.10782049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
After amputation, muscle signals can be used as a signal source for advanced prosthetic control. Innovative surgical techniques like muscle reinnervation surgeries have proven to be an advanced option. This study introduces a novel variation of the traditional muscle reinnervation approaches to provide a more robust and flexible signal source in prosthetic limbs. By implanting two separated fascicles at distant locations within a single muscle, our approach facilitates more effective innervation of the muscle to increase the spatial separability of the signal. Electrophysiological and histological analyses are used to verify that muscle signal amplitude is increased and the separability of motor units within the signal is improved. This work holds potential for enhancing the signals used to control dexterous prostheses.
Collapse
|
3
|
Ku YC, Akhavan AA, Hultman CS. Surgical Management of Chronic Neuropathic Burn Pain. Clin Plast Surg 2024; 51:419-434. [PMID: 38789151 DOI: 10.1016/j.cps.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Burn-related chronic neuropathic pain can contribute to a decreased quality of life. When medical and pharmacologic therapies prove ineffective, patients should undergo evaluation for surgical intervention, consisting of a detailed physical examination and elective diagnostic nerve block, to identify an anatomic cause of pain. Based on symptoms and physical examination findings, particularly Tinel's sign, treatments can vary, including a trial of laser therapies, fat grafting, or nerve surgeries (nerve decompression, neuroma excision, targeted muscle reinnervation, regenerative peripheral nerve interfaces, and vascularized denervated muscle targets). It is essential to counsel patients to establish appropriate expectations prior to treatment with a multidisciplinary team.
Collapse
Affiliation(s)
- Ying C Ku
- Department of Surgery, Campbell University School of Osteopathic Medicine, 4350 US Highway 421 South, Lillington, NC 27546, USA
| | - Arya Andre Akhavan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Rutgers New Jersey Medical School, 90 Bergen St., Newark, NJ 07103
| | - Charles Scott Hultman
- Department of Plastic and Reconstructive Surgery, WPP Plastic and Reconstructive Surgery, WakeMed Health and Hospitals, 3000 New Bern Avenue, Raleigh, NC 27610, USA.
| |
Collapse
|
4
|
Aslami ZV, Leland CR, Strike SA, Forsberg JA, Morris CD, Levin AS, Tuffaha SH. Symptomatic Neuroma Development following En Bloc Resection of Skeletal and Soft-Tissue Tumors: A Retrospective Analysis of 331 Cases. Plast Reconstr Surg 2024; 153:873-883. [PMID: 37199679 DOI: 10.1097/prs.0000000000010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although symptomatic neuroma formation has been described in other patient populations, these data have not been studied in patients undergoing resection of musculoskeletal tumors. This study aimed to characterize the incidence and risk factors of symptomatic neuroma formation following en bloc resection in this population. METHODS The authors retrospectively reviewed adults undergoing en bloc resections for musculoskeletal tumors at a high-volume sarcoma center from 2014 to 2019. The authors included en bloc resections for an oncologic indication and excluded non-en bloc resections, primary amputations, and patients with insufficient follow-up. Data are provided as descriptive statistics, and multivariable regression modeling was performed. RESULTS The authors included 231 patients undergoing 331 en bloc resections (female, 46%; mean age, 52 years). Nerve transection was documented in 87 resections (26%). There were 81 symptomatic neuromas (25%) meeting criteria of Tinel sign or pain on examination and neuropathy in the distribution of suspected nerve injury. Factors associated with symptomatic neuroma formation included age 18 to 39 [adjusted OR (aOR), 3.6; 95% CI, 1.5 to 8.4; P < 0.01] and 40 to 64 (aOR, 2.2; 95% CI, 1.1 to 4.6; P = 0.04), multiple resections (aOR, 3.2; 95% CI, 1.7 to 5.9; P < 0.001), preoperative neuromodulator requirement (aOR, 2.7; 95% CI, 1.2 to 6.0; P = 0.01), and resection of fascia or muscle (aOR, 0.5; 95% CI, 0.3 to 1.0; P = 0.045). CONCLUSION The authors' results highlight the importance of adequate preoperative optimization of pain control and intraoperative prophylaxis for neuroma prevention following en bloc resection of tumors, particularly for younger patients with a recurrent tumor burden. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Zohra V Aslami
- From the Department of Plastic and Reconstructive Surgery
| | - Christopher R Leland
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Sophia A Strike
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Jonathan A Forsberg
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Carol D Morris
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Adam S Levin
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Sami H Tuffaha
- From the Department of Plastic and Reconstructive Surgery
| |
Collapse
|
5
|
González-Prieto J, Cristóbal L, Arenillas M, Giannetti R, Muñoz Frías JD, Alonso Rivas E, Sanz Barbero E, Gutiérrez-Pecharromán A, Díaz Montero F, Maldonado AA. Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review. Int J Mol Sci 2024; 25:1141. [PMID: 38256216 PMCID: PMC10816042 DOI: 10.3390/ijms25021141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Regenerative Peripheral Nerve Interfaces (RPNIs) encompass neurotized muscle grafts employed for the purpose of amplifying peripheral nerve electrical signaling. The aim of this investigation was to undertake an analysis of the extant literature concerning animal models utilized in the context of RPNIs. A systematic review of the literature of RPNI techniques in animal models was performed in line with the PRISMA statement using the MEDLINE/PubMed and Embase databases from January 1970 to September 2023. Within the compilation of one hundred and four articles employing the RPNI technique, a subset of thirty-five were conducted using animal models across six distinct institutions. The majority (91%) of these studies were performed on murine models, while the remaining (9%) were conducted employing macaque models. The most frequently employed anatomical components in the construction of the RPNIs were the common peroneal nerve and the extensor digitorum longus (EDL) muscle. Through various histological techniques, robust neoangiogenesis and axonal regeneration were evidenced. Functionally, the RPNIs demonstrated the capability to discern, record, and amplify action potentials, a competence that exhibited commendable long-term stability. Different RPNI animal models have been replicated across different studies. Histological, neurophysiological, and functional analyses are summarized to be used in future studies.
Collapse
Affiliation(s)
- Jorge González-Prieto
- Peripheral Nerve Unit, Department of Plastic Surgery, University Hospital of Getafe, 28905 Madrid, Spain; (J.G.-P.); (L.C.)
- Department of Medicine, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lara Cristóbal
- Peripheral Nerve Unit, Department of Plastic Surgery, University Hospital of Getafe, 28905 Madrid, Spain; (J.G.-P.); (L.C.)
- Department of Medicine, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mario Arenillas
- Animal Medicine and Surgery Department, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Romano Giannetti
- Institute for Research in Technology, ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain; (R.G.); (J.D.M.F.)
| | - José Daniel Muñoz Frías
- Institute for Research in Technology, ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain; (R.G.); (J.D.M.F.)
| | - Eduardo Alonso Rivas
- Institute for Research in Technology, ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain; (R.G.); (J.D.M.F.)
| | - Elisa Sanz Barbero
- Peripheral Nerve Unit, Neurophysiology Department, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Ana Gutiérrez-Pecharromán
- Peripheral Nerve Unit, Pathological Anatomy Department, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Francisco Díaz Montero
- Department of Design, BAU College of Arts & Design of Barcelona, 28036 Barcelona, Spain;
| | - Andrés A. Maldonado
- Peripheral Nerve Unit, Department of Plastic Surgery, University Hospital of Getafe, 28905 Madrid, Spain; (J.G.-P.); (L.C.)
- Department of Medicine, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
6
|
Bhoopalam M, Colakoglu S, Tuffaha SH, Reddy SK. Vascularized Denervated Muscle Targets for Headache Surgery-Presentation and Surgical Management. J Craniofac Surg 2023; 34:2450-2452. [PMID: 37791796 DOI: 10.1097/scs.0000000000009754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/19/2023] [Indexed: 10/05/2023] Open
Abstract
Patients with substantial trauma to their occipital nerves and those with recurrent or persistent chronic headaches after occipital nerve decompression surgery require transection of their greater occipital and/or lesser occipital nerves to control debilitating pain. Current techniques, such as burying the transected nerve stump in nearby muscle, do not prevent neuroma formation, and more advanced techniques, such as targeted muscle reinnervation and regenerative peripheral nerve interface, have demonstrated only short-term anecdotal success in the context of headache surgery. Vascularized denervated muscle targets (VDMTs) are a novel technique to address the proximal nerve stump after nerve transection that has shown promise to improve chronic nerve pain and prevent neuroma formation. However, VDMTs have not been described in the context of headache surgery. Here authors describe the etiology, workup, and surgical management of 2 patients with recurrent occipital neuralgia who developed vexing neuromas after previous surgery and were successfully treated with VDMTs, remaining pain-free at 3-year follow-up.
Collapse
Affiliation(s)
- Myan Bhoopalam
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Salih Colakoglu
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Sami H Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Hanwright PJ, Suresh V, Shores JT, Souza JM, Tuffaha SH. Current Concepts in Lower Extremity Amputation: A Primer for Plastic Surgeons. Plast Reconstr Surg 2023; 152:724e-736e. [PMID: 37768220 DOI: 10.1097/prs.0000000000010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the goals of lower extremity reconstruction and identify clinical scenarios favoring amputation. 2. Understand lower extremity amputation physiology and biomechanics. 3. Review soft-tissue considerations to achieve durable coverage. 4. Appreciate the evolving management of transected nerves. 5. Highlight emerging applications of osseointegration and strategies to improve myoelectric prosthetic control. SUMMARY Plastic surgeons are well versed in lower extremity reconstruction for traumatic, oncologic, and ischemic causes. Limb amputation is an increasingly sophisticated component of the reconstructive algorithm and is indicated when the residual limb is predicted to be more functional than a salvaged limb. Although plastic surgeons have traditionally focused on limb salvage, they play an increasingly vital role in optimizing outcomes from amputation. This warrants a review of core concepts and an update on emerging reconstructive techniques in amputee care.
Collapse
Affiliation(s)
- Philip J Hanwright
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Visakha Suresh
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Jaimie T Shores
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Jason M Souza
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center
| | - Sami H Tuffaha
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| |
Collapse
|