1
|
Lipchick B, Guterres AN, Chen HY, Zundell DM, Del Aguila S, Reyes-Uribe PI, Tirado Y, Basu S, Yin X, Kossenkov AV, Lu Y, Mills GB, Liu Q, Goldman AR, Murphy ME, Speicher DW, Villanueva J. Selective abrogation of S6K2 identifies lipid homeostasis as a survival vulnerability in MAPK inhibitor-resistant NRAS-mutant melanoma. Sci Transl Med 2025; 17:eadp8913. [PMID: 39908352 DOI: 10.1126/scitranslmed.adp8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Although oncogenic NRAS activates mitogen-activated protein kinase (MAPK) signaling, inhibition of the MAPK pathway is not therapeutically efficacious in NRAS-mutant (NRASMUT) tumors. Here, we report that selectively silencing the ribosomal protein S6 kinase 2 (S6K2) while preserving the activity of S6K1 perturbs lipid metabolism, enhances fatty acid unsaturation, and triggers lethal lipid peroxidation in NRASMUT melanoma cells that are resistant to MAPK inhibition. S6K2 depletion induces endoplasmic reticulum stress and peroxisome proliferator-activated receptor α (PPARα) activation, triggering cell death selectively in MAPK inhibitor-resistant melanoma. We found that combining PPARα agonists and polyunsaturated fatty acids phenocopied the effects of S6K2 abrogation, blocking tumor growth in both patient-derived xenografts and immunocompetent murine melanoma models. Collectively, our study establishes S6K2 and its effector subnetwork as promising targets for NRASMUT melanomas that are resistant to global MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Brittany Lipchick
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Adam N Guterres
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Hsin-Yi Chen
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Delaine M Zundell
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Segundo Del Aguila
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Patricia I Reyes-Uribe
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Yulissa Tirado
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
- Proteomics and Metabolomics Core Facility, Wistar Institute, Philadelphia, PA 19104 USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Melanogenesis and the Targeted Therapy of Melanoma. Biomolecules 2022; 12:biom12121874. [PMID: 36551302 PMCID: PMC9775438 DOI: 10.3390/biom12121874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pigment production is a unique character of melanocytes. Numerous factors are linked with melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understanding the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R's central determinant roles and MITF as a master transcriptional regulator in melanogenesis. Moreover, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are becoming the newest therapeutic option in advanced melanoma.
Collapse
|
3
|
Goto H, Yakushijin K, Adachi Y, Matsumoto H, Yamamoto K, Matsumoto S, Yamashita T, Higashime A, Kawaguchi K, Kurata K, Matsuoka H, Minami H. A Pathogenic NRAS c.38 G>A (p.G13D) Mutation in RARA Translocation-negative Acute Promyelocytic-like Leukemia with Concomitant Myelodysplastic Syndrome. Intern Med 2022; 62:1329-1334. [PMID: 36130886 DOI: 10.2169/internalmedicine.0174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An acute promyelocytic leukemia (APL) patient not demonstrating the retinoic acid receptor α (RARA) translocation is rare. A 76-year-old man was diagnosed with myelodysplastic syndrome (MDS). After a year, abnormal promyelocytes were detected with pancytopenia and disseminated intravascular coagulopathy. Morphologically, the patient was diagnosed with APL; however, a genetic examination failed to detect RARA translocation. Thereafter, whole-genome sequencing revealed an NRAS missense mutation [c.38 G>A (p.G13D)]. This mutation was not detected in posttreatment bone marrow aspirate, despite residual MDS. Few reports are available on similar cases. Furthermore, the NRAS c.38 G>A mutation may be a novel pathogenic variant exacerbating RARA translocation-negative acute promyelocytic-like leukemia.
Collapse
Affiliation(s)
- Hideaki Goto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
- Department of Oncology and Hematology, Hyogo Prefectural HarimaHimeji General Medical Center, Japan
- Department of Internal Medicine, JCHO Kobe Central Hospital, Japan
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Yoko Adachi
- Department of Internal Medicine, JCHO Kobe Central Hospital, Japan
| | | | - Katsuya Yamamoto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Sakuya Matsumoto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Tomoe Yamashita
- Department of Clinical Laboratory, Kobe University Hospital, Japan
| | - Ako Higashime
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Koji Kawaguchi
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Keiji Kurata
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Hiroshi Matsuoka
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| |
Collapse
|
4
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
5
|
LoRusso PM, Schalper K, Sosman J. Targeted therapy and immunotherapy: Emerging biomarkers in metastatic melanoma. Pigment Cell Melanoma Res 2020; 33:390-402. [PMID: 31705737 DOI: 10.1111/pcmr.12847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Targeted therapy directed against oncogenic BRAF mutations and immune checkpoint inhibitors have transformed melanoma therapy over the past decade and prominently improved patient outcomes. However, not all patients will respond to targeted therapy or immunotherapy and many relapse after initially responding to treatment. This unmet need presents two major challenges. First, can we elucidate novel oncogenic drivers to provide new therapeutic targets? Second, can we identify patients who are most likely to respond to current therapeutic strategies in order to both more accurately select populations and avoid undue drug exposure in patients unlikely to respond? In an effort to evaluate the current state of the field with respect to these questions, we provide an overview of some common oncogenic mutations in patients with metastatic melanoma and ongoing efforts to therapeutically target these populations, as well as a discussion of biomarkers for response to immune checkpoint inhibitors-including tumor programmed death ligand 1 expression and the future use of neoantigens as a means of truly personalized therapy. This information is becoming important in treatment decision making and provides the framework for a treatment algorithm based on the current landscape in metastatic melanoma.
Collapse
Affiliation(s)
| | - Kurt Schalper
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
7
|
Echevarría-Vargas IM, Reyes-Uribe PI, Guterres AN, Yin X, Kossenkov AV, Liu Q, Zhang G, Krepler C, Cheng C, Wei Z, Somasundaram R, Karakousis G, Xu W, Morrissette JJ, Lu Y, Mills GB, Sullivan RJ, Benchun M, Frederick DT, Boland G, Flaherty KT, Weeraratna AT, Herlyn M, Amaravadi R, Schuchter LM, Burd CE, Aplin AE, Xu X, Villanueva J. Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 2019; 10:emmm.201708446. [PMID: 29650805 PMCID: PMC5938620 DOI: 10.15252/emmm.201708446] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite novel therapies for melanoma, drug resistance remains a significant hurdle to achieving optimal responses. NRAS‐mutant melanoma is an archetype of therapeutic challenges in the field, which we used to test drug combinations to avert drug resistance. We show that BET proteins are overexpressed in NRAS‐mutant melanoma and that high levels of the BET family member BRD4 are associated with poor patient survival. Combining BET and MEK inhibitors synergistically curbed the growth of NRAS‐mutant melanoma and prolonged the survival of mice bearing tumors refractory to MAPK inhibitors and immunotherapy. Transcriptomic and proteomic analysis revealed that combining BET and MEK inhibitors mitigates a MAPK and checkpoint inhibitor resistance transcriptional signature, downregulates the transcription factor TCF19, and induces apoptosis. Our studies demonstrate that co‐targeting MEK and BET can offset therapy resistance, offering a salvage strategy for melanomas with no other therapeutic options, and possibly other treatment‐resistant tumor types.
Collapse
Affiliation(s)
| | | | - Adam N Guterres
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Xiangfan Yin
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gao Zhang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chaoran Cheng
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | | | - Giorgos Karakousis
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Jd Morrissette
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Miao Benchun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ashani T Weeraratna
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ravi Amaravadi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christin E Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessie Villanueva
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA .,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
8
|
Robinson JP, Rebecca VW, Kircher DA, Silvis MR, Smalley I, Gibney GT, Lastwika KJ, Chen G, Davies MA, Grossman D, Smalley KS, Holmen SL, VanBrocklin MW. Resistance mechanisms to genetic suppression of mutant NRAS in melanoma. Melanoma Res 2017; 27:545-557. [PMID: 29076949 PMCID: PMC5683096 DOI: 10.1097/cmr.0000000000000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted therapies have revolutionized cancer care, but the development of resistance remains a challenge in the clinic. To identify rational targets for combination strategies, we used an established melanoma mouse model and selected for resistant tumors following genetic suppression of NRAS expression. Complete tumor regression was observed in all mice, but 40% of tumors recurred. Analysis of resistant tumors showed that the most common mechanism of resistance was overexpression and activation of receptor tyrosine kinases (RTKs). Interestingly, the most commonly overexpressed RTK was Met and inhibition of Met overcame NRAS resistance in this context. Analysis of NRAS mutant human melanoma cells showed enhanced efficacy of cytotoxicity with combined RTK and mitogen-activated protein kinase kinase inhibition. In this study, we establish the importance of adaptive RTK signaling in the escape of NRAS mutant melanoma from inhibition of RAS and provide the rationale for combined blockade of RAS and RTK signaling in this context.
Collapse
Affiliation(s)
| | - Vito W. Rebecca
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - David A. Kircher
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Mark R. Silvis
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Inna Smalley
- Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
- Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Geoffrey T. Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | - Kristin J. Lastwika
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guo Chen
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Grossman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Keiran S.M. Smalley
- Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
- Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Sheri L. Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Matthew W. VanBrocklin
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, Tsatsakis A, Susan R, Soica C, Avram S, Dehelean C. Effects of ursolic and oleanolic on SK‑MEL‑2 melanoma cells: In vitro and in vivo assays. Int J Oncol 2017; 51:1651-1660. [PMID: 29039461 PMCID: PMC5673023 DOI: 10.3892/ijo.2017.4160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Among the triterpenoids, oleanolic acid (OA) and its isomer, ursolic acid (UA) are promising therapeutic candidates, with potential benefits in the management of melanoma. In this study, we aimed to examine the in vitro and in vivo anti‑invasive and anti‑metastatic activity of OA and UA to determine their possible usefulness as chemopreventive or chemotherapeutic agents in melanoma. For the in vitro experiments, the anti‑proliferative activity of the triterpenic compounds on SK‑MEL‑2 melanoma cells was examined. The anti‑invasive potential was assessed by testing the effects of the active compound on vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) adhesion to melanoma cells. Normal and tumor angiogenesis were evaluated in vivo by chicken embryo chorioallantoic membrane (CAM) assay. The two test triterpenoid acids, UA and OA, exerted differential effects in vitro and in vivo on the SK‑MEL‑2 melanoma cells. UA exerted a significant and dose‑dependent anti‑proliferative effect in vitro, compared to OA. The cytotoxic effects in vitro on the melanoma cells were determined by the examining alterations in the cell cycle phases induced by UA that lead to cell arrest in the S phase. Moreover, UA was found to affect SK‑MEL‑2 melanoma cell invasiveness by limiting the cell adhesion capacity to ICAM molecules, but not influencing their adhesion to VCAM molecules. On the whole, in this study, by assessing the effects of the two triterpenoids in vivo, our results revealed that OA had a greater potential to impair the invasive capacity and tumor angiogenesis compared with UA.
Collapse
Affiliation(s)
- Angela Caunii
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Mirabela Cristea
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Alexandra Ivan
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Corina Danciu
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Calin Tatu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Virgil Paunescu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis, Arad 310025, Romania
| | - George Tzanakakis
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Razvan Susan
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Stefana Avram
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| |
Collapse
|
10
|
Koelblinger P, Dummer R. Targeted treatment of advanced NRAS-mutated melanoma. Oncotarget 2017; 8:84616-84617. [PMID: 29156659 PMCID: PMC5689549 DOI: 10.18632/oncotarget.21388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter Koelblinger
- Reinhard Dummer: Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Reinhard Dummer: Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Koelblinger P, Dornbierer J, Dummer R. A review of binimetinib for the treatment of mutant cutaneous melanoma. Future Oncol 2017; 13:1755-1766. [PMID: 28587477 DOI: 10.2217/fon-2017-0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although significant progress has been made in the treatment of unresectable or metastatic melanoma, at least half of all advanced melanoma patients eventually progress and pass away due to their disease. In particular, patients with NRAS-mutated melanoma still face limited therapeutic options, with immunotherapy being the current treatment type of choice. Binimetinib is a selective inhibitor of MEK, a central kinase in the tumor-promoting MAPK pathway. The results of a recent Phase III trial rendered binimetinib the first targeted therapy agent to significantly improve progression-free survival in NRAS-mutated melanoma. This review will summarize the development and clinical data of binimetinib in melanoma in general and also explore the potential future role of this substance as single agent or combination therapy.
Collapse
Affiliation(s)
- Peter Koelblinger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Joelle Dornbierer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Tsao H, Fukunaga-Kalabis M, Herlyn M. Recent Advances in Melanoma and Melanocyte Biology. J Invest Dermatol 2017; 137:557-560. [PMID: 28089201 DOI: 10.1016/j.jid.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Mizuho Fukunaga-Kalabis
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|