1
|
Dedeilia A, Lwin T, Li S, Tarantino G, Tunsiricharoengul S, Lawless A, Sharova T, Liu D, Boland GM, Cohen S. Factors Affecting Recurrence and Survival for Patients with High-Risk Stage II Melanoma. Ann Surg Oncol 2024; 31:2713-2726. [PMID: 38158497 PMCID: PMC10908640 DOI: 10.1245/s10434-023-14724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND In the current era of effective adjuvant therapies and de-escalation of surgery, distinguishing which patients with high-risk stage II melanoma are at increased risk of recurrence after excision of the primary lesion is essential to determining appropriate treatment and surveillance plans. METHODS A single-center retrospective study analyzed patients with stage IIB or IIC melanoma. Demographic and tumor data were collected, and genomic analysis of formalin-fixed, paraffin-embedded tissue samples was performed via an internal next-generation sequencing (NGS) platform (SNaPshot). The end points examined were relapse-free survival (RFS), distant metastasis-free survival (DMFS), overall survival (OS), and melanoma-specific survival (MSS). Uni- and multivariable Cox regressions were performed to calculate the hazard ratios. RESULTS The study included 92 patients with a median age of 69 years and a male/female ratio of 2:1. A Breslow depth greater than 4 mm, a higher mitotic rate, an advanced T stage, and a KIT mutation had a negative impact on RFS. A primary lesion in the head and neck, a mitotic rate exceeding 10 mitoses per mm2, a CDH1 mutation, or a KIT mutation was significantly associated with a shorter DMFS. Overall survival was significantly lower with older age at diagnosis and a higher mitotic rate. An older age at diagnosis also had a negative impact on MSS. CONCLUSION Traditional histopathologic factors and specific tumor mutations displayed a significant correlation with disease recurrence and survival for patients with high-risk stage II melanoma. This study supported the use of genomic testing of high-risk stage II melanomas for prognostic prediction and risk stratification.
Collapse
Affiliation(s)
- Aikaterini Dedeilia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thinzar Lwin
- Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siming Li
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Tarantino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Aleigha Lawless
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sonia Cohen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Kim YS, Kim D, Park J, Chung YJ. Single-cell RNA sequencing of a poorly metastatic melanoma cell line and its subclones with high lung and brain metastasis potential reveals gene expression signature of metastasis with prognostic implication. Exp Dermatol 2023; 32:1774-1784. [PMID: 37534569 DOI: 10.1111/exd.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2). Unsupervised clustering of 8173 melanoma cells identified three distinct clusters according to cell type ('Primary', 'Lung' and 'Brain' clusters) with differential expression of MITF and AXL pathways and putative cancer and cell cycle drivers, with the lung cluster expressing intermediate but distinct gene profiles between primary and brain clusters. Principal component (PC) analysis revealed that PC2 (the second PC), which was positively associated with MITF expression and negatively with AXL pathways, primarily segregated cell types, in addition to PC1 of the cell cycle pathway. Pseudotime trajectory and RNA velocity analyses suggested the existence of cellular subsets with metastatic potential in the Primary cluster and an association between PC2 signature alteration and metastasis potential acquisition. Analysis of The Cancer Genome Atlas melanoma samples by clustering into PC2-high and -low clusters by quartiles of PC2 signature expression revealed that the PC2-high cluster was an independent significant factor for poor prognosis (p-value = 0.003) with distinct genomic and transcriptomic characteristics, compared to the PC2-low cluster. In conclusion, we identified signatures of melanoma metastasis with prognostic significance and putative pro-metastatic subclones within a primary cell line.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Pimenta J, Pires I, Prada J, Cotovio M. E-Cadherin Immunostaining in Equine Melanocytic Tumors. Animals (Basel) 2023; 13:2216. [PMID: 37444014 DOI: 10.3390/ani13132216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Melanocytic tumors are an important neoplastic disease in human and veterinary medicine, presenting large differences regarding tumor behavior between species. In horses, these tumors present a prolonged benign behavior, with rare invasiveness and metastases. In humans and small animals, invasion and metastasis have been associated with an Epithelial-Mesenchymal Transition, where the loss of E-cadherin expression plays a key role in tumor progression. This process and the role of E-cadherin have not yet been evaluated in equine melanocytic tumors. This study aimed to assess the immunolabeling of E-cadherin in equine melanocytic tumors and relate this with clinicopathological variables. A total of 72 equine melanocytic tumors were classified as benign and malignant and evaluated by immunohistochemistry for E-cadherin expression. A different pattern of immunostaining was found, contrasting with other species. A total of 69.4% of tumors presented raised immunolabeling of E-cadherin, with 70.7% of melanomas remaining with high expression. The typical loss of immunostaining was not seen in malignant melanomas and no differences were found between benign and malignant melanomas regarding E-cadherin immunostaining. The high immunolabeling of E-cadherin may contribute to the low invasiveness of these tumors, and it is in accordance with the benign behavior of equine melanoma and with the genetic factors associated with its development.
Collapse
Affiliation(s)
- José Pimenta
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Justina Prada
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Shabna A, Antony J, Vijayakurup V, Saikia M, Liju VB, Retnakumari AP, Amrutha NA, Alex VV, Swetha M, Aiswarya SU, Jannet S, Unni US, Sundaram S, Sherin DR, Anto NP, Bava SV, Chittalakkottu S, Ran S, Anto RJ. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell Mol Life Sci 2022; 79:478. [PMID: 35948813 PMCID: PMC11072980 DOI: 10.1007/s00018-022-04476-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.
Collapse
Affiliation(s)
- Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Zoology, St. Thomas College, Palai, Kottayam, Kerala, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, 32610, USA
| | - Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vijayasteltar B Liju
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Nisthul A Amrutha
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Vijai V Alex
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sreekumar U Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Uma Subramanian Unni
- KRIBS-BioNest, Third Campus of Rajiv Gandhi Centre for Biotechnology (RGCB) Kalamassery, Kochi, Kerala, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Daisy R Sherin
- Indian Institute of Information Technology and Management, Karyavattom, Kazhakkoottam, Kerala, 695581, India
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Sadasivan Chittalakkottu
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, PO Box 19626, Springfield, IL, USA
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
5
|
Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101007. [PMID: 34681232 PMCID: PMC8537856 DOI: 10.3390/ph14101007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a melanocyte-derived skin cancer that has a high heterogeneity due to its phenotypic plasticity, a trait that may explain its ability to survive in the case of physical or molecular aggression and to develop resistance to therapy. Therefore, the therapy modulation of phenotypic switching in combination with other treatment modalities could become a common approach in any future therapeutic strategy. In this paper, we used the syngeneic model of B16F10 melanoma implanted in C57BL/6 mice to evaluate the phenotypic changes in melanoma induced by therapy with iron oxide nanoparticles functionalized with salicylic acid (SaIONs). The results of this study showed that the oral administration of the SaIONs aqueous dispersion was followed by phenotypic switching to highly pigmented cells in B16F10 melanoma through a cytotoxicity-induced cell selection mechanism. The hyperpigmentation of melanoma cells by the intra- or extracellular accumulation of melanic pigment deposits was another consequence of the SaIONs therapy. Additional studies are needed to assess the reversibility of SaIONs-induced phenotypic switching and the impact of tumor hyperpigmentation on B16F10 melanoma’s progression and metastasis abilities.
Collapse
|
6
|
Prevention of Melanoma Extravasation as a New Treatment Option Exemplified by p38/MK2 Inhibition. Int J Mol Sci 2020; 21:ijms21218344. [PMID: 33172202 PMCID: PMC7664432 DOI: 10.3390/ijms21218344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Melanoma releases numerous tumor cells into the circulation; however, only a very small fraction of these cells is able to establish distant metastasis. Intravascular survival of circulating tumor cells is limited through hemodynamic forces and by the lack of matrix interactions. The extravasation step is, thus, of unique importance to establish metastasis. Similar to leukocyte extravasation, this process is under the control of adhesion molecule pairs expressed on melanoma and endothelial cells, and as for leukocytes, ligands need to be adequately presented on cell surfaces. Based on melanoma plasticity, there is considerable heterogeneity even within one tumor and one patient resulting in a mixture of invasive or proliferative cells. The molecular control for this switch is still ill-defined. Recently, the balance between two kinase pathways, p38 and JNK, has been shown to determine growth characteristics of melanoma. While an active JNK pathway induces a proliferative phenotype with reduced invasive features, an active p38/MK2 pathway results in an invasive phenotype and supports the extravasation step via the expression of molecules capable of binding to endothelial integrins. Therapeutic targeting of MK2 to prevent extravasation might reduce metastatic spread.
Collapse
|