1
|
Li J, Sun H, Guan J, Li B, Jin C, Xie S, Liu Y. Immunogenicity of chondrocyte sheets: a review. Front Immunol 2025; 16:1529384. [PMID: 40124370 PMCID: PMC11926542 DOI: 10.3389/fimmu.2025.1529384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
The chondrocyte sheet is a sheet-like cell structure obtained by separating in vitro expanded and fused autologous chondrocytes from the bottom of the culture dish by physical means. The cell sheet contains autologous chondrocytes, extracellular matrix secreted by chondrocytes, and connective structures established between cells and matrix, and between cells and cells. In cartilage tissue engineering, chondrocyte sheets technology has great potential for the treatment of cartilage defects. Chondrocyte sheets have a low immunogenicity because they avoid the immune reaction caused by scaffolding materials. However, chondrocyte sheets can still cause severe local tissue swelling in the short term after implantation, resulting in a poor patient experience. In individual cases, an inflammatory reaction may even occur, leading to resorption of the chondrocyte sheet. This may be immunogenetically related to chondrocyte membrane surface-associated antigens, components of the extracellular matrix secreted by chondrocytes, and various bioactive components in the culture medium used during in vitro chondrocyte culture. Therefore, in order to investigate the causes of local tissue swelling and immune-inflammatory reactions induced by the implantation of chondrocyte sheets, this article reviews the immunogenicity of chondrocyte-associated antigens, components of the extracellular matrix of cartilage, and the active components of the cell culture medium.
Collapse
Affiliation(s)
- Juncen Li
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Huilin Sun
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Guan
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Bohui Li
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Jin
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Shanhong Xie
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Resthetic Biotechnology. Co., Ltd, Shanghai, China
| |
Collapse
|
2
|
Ghaffarinia A, Póliska S, Ayaydin F, Goblos A, Parvaneh S, Manczinger M, Balogh F, Erdei L, Veréb Z, Szabó K, Bata-Csörgő Z, Kemény L. Unraveling Transcriptome Profile, Epigenetic Dynamics, and Morphological Changes in Psoriasis-like Keratinocytes: "Insights into Similarity with Psoriatic Lesional Epidermis". Cells 2023; 12:2825. [PMID: 38132145 PMCID: PMC10741855 DOI: 10.3390/cells12242825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Keratinocytes are one of the primary cells affected by psoriasis inflammation. Our study aimed to delve deeper into their morphology, transcriptome, and epigenome changes in response to psoriasis-like inflammation. We created a novel cytokine mixture to mimic mild and severe psoriasis-like inflammatory conditions in cultured keratinocytes. Upon induction of inflammation, we observed that the keratinocytes exhibited a mesenchymal-like phenotype, further confirmed by increased VIM mRNA expression and results obtained from confocal microscopy. We performed RNA sequencing to achieve a more global view, revealing 858 and 6987 DEGs in mildly and severely inflamed keratinocytes, respectively. Surprisingly, we found that the transcriptome of mildly inflamed keratinocytes more closely mimicked that of the psoriatic epidermis transcriptome than the severely inflamed keratinocytes. Genes involved in the IL-17 pathway were a major contributor to the similarities of the transcriptomes between mildly inflamed KCs and psoriatic epidermis. Mild and severe inflammation led to the gene regulation of epigenetic modifiers such as HATs, HDACs, DNMTs, and TETs. Immunofluorescence staining revealed distinct 5-hmC patterns in inflamed versus control keratinocytes, and consistently low 5-mC intensity in both groups. However, the global DNA methylation assay detected a tendency of decreased 5-mC levels in inflamed keratinocytes versus controls. This study emphasizes how inflammation severity affects the transcriptomic similarity of keratinocytes to psoriatic epidermis and proves dynamic epigenetic regulation and adaptive morphological changes in inflamed keratinocytes.
Collapse
Affiliation(s)
- Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Ferhan Ayaydin
- HCEMM-USZ Functional Cell Biology and Immunology, Advanced Core Facility, H-6728 Szeged, Hungary;
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Aniko Goblos
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (Z.V.)
| | - Shahram Parvaneh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- Systems Immunology Research Group, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- HCEMM-Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Fanni Balogh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lilla Erdei
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (Z.V.)
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Szabó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Flink LB, Ghaffarinia A, Papp BT, Varga Á, Vigh AI, Vidács DL, Kui R, Kemény L, Bata-Csörgő Z, Bozó R. Abnormal basement membrane results in increased keratinocyte-derived periostin expression in psoriasis similar to wound healing. Sci Rep 2023; 13:16386. [PMID: 37773198 PMCID: PMC10541889 DOI: 10.1038/s41598-023-43396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
The psoriatic skin resembles wound healing, and it shows abnormalities at the basement membrane (BM), also in the non-lesional skin. Fibroblast-derived dermal periostin has well-known functions in wound healing and Th2-mediated diseases, such as atopic dermatitis. Here we show that serum periostin level was elevated in psoriatic patients, remarkably in the systemically treated ones. Obvious periostin positivity was detected in basal keratinocytes of the non-lesional, lesional, and previously-lesional psoriatic vs. healthy skin. Ex vivo skin models were generated to examine how different skin injuries affect periostin expression during wound healing. Our newly developed cultured salt-split model demonstrated that BM-injury induced periostin expression in basal keratinocytes, and periostin levels in the supernatant were also increased upon healing. In wound healing models, β1-integrin expression was similarly induced. β1-integrin blocking caused reduced periostin expression in in vitro scratch assay, indicating that β1-integrin can mediate periostin production. In contrast to atopic dermatitis, psoriatic basal keratinocytes are in an activated state and show a stable wound healing-like phenotype with the overexpression of periostin. This abnormal BM-induced wound healing as a potential compensatory mechanism can be initiated already in the non-lesional skin present in the lesion and keratinocytes can remain activated in the healed skin.
Collapse
Affiliation(s)
- Lili Borbála Flink
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary.
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, 6720, Hungary.
| | - Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Benjamin Tamás Papp
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
| | - Ákos Varga
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
| | - András István Vigh
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
| | - Dániel László Vidács
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
| | - Róbert Kui
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, 6720, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, Szeged, 6720, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, 6720, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, Szeged, 6720, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, Korányi Street 6, Szeged, 6720, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, 6720, Hungary
| |
Collapse
|
4
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
5
|
Kleissl L, Weinmüllner R, Lämmermann I, Dingelmaier-Hovorka R, Jafarmadar M, El Ghalbzouri A, Stary G, Grillari J, Dellago H. PRPF19 modulates morphology and growth behavior in a cell culture model of human skin. FRONTIERS IN AGING 2023; 4:1154005. [PMID: 37214773 PMCID: PMC10196211 DOI: 10.3389/fragi.2023.1154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.
Collapse
Affiliation(s)
- Lisa Kleissl
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ingo Lämmermann
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | | | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Georg Stary
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | - Hanna Dellago
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
6
|
Ghaffarinia A, Ayaydin F, Póliska S, Manczinger M, Bolla BS, Flink LB, Balogh F, Veréb Z, Bozó R, Szabó K, Bata-Csörgő Z, Kemény L. Psoriatic Resolved Skin Epidermal Keratinocytes Retain Disease-Residual Transcriptomic and Epigenomic Profiles. Int J Mol Sci 2023; 24:ijms24054556. [PMID: 36901987 PMCID: PMC10002496 DOI: 10.3390/ijms24054556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.
Collapse
Affiliation(s)
- Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ, Functional Cell Biology and Immunology, Advanced Core Facility, H-6728 Szeged, Hungary
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Systems Immunology Research Group, Institute of Biochemistry, Biological Research Centre, ELKH, H-6726 Szeged, Hungary
- HCEMM-Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Beáta Szilvia Bolla
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Fanni Balogh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Renáta Bozó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Szabó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
7
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
8
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
9
|
The Psoriatic Nonlesional Skin: A Battlefield between Susceptibility and Protective Factors. J Invest Dermatol 2021; 141:2785-2790. [PMID: 34216605 DOI: 10.1016/j.jid.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
In the last two decades, large-scale gene-expression studies on psoriatic skin samples revealed that even though nonlesional skin is macroscopically identical to healthy skin, it harbors several molecular differences. Originally, these molecular differences were thought to represent susceptibility factors for plaque formation. However, we review in this paper the several factors of immune regulation and structural alteration that are specific for the nonlesional skin and serve as protective factors by counteracting plaque formation and contributing to the maintenance of the nonlesional phenotype.
Collapse
|
10
|
Bozó R, Danis J, Flink LB, Vidács DL, Kemény L, Bata-Csörgő Z. Stress-Related Regulation Is Abnormal in the Psoriatic Uninvolved Skin. Life (Basel) 2021; 11:life11070599. [PMID: 34201431 PMCID: PMC8303303 DOI: 10.3390/life11070599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Keratinocyte stress-response of the uninvolved psoriatic epidermis is known to be altered compared to healthy cells. Therefore, we aimed to reveal potential mechanisms underlying this alteration. We compared the expression of annotated cell-stress-related proteins between uninvolved psoriatic and healthy skin using the protein array method. Data were analyzed by the Reactome over-representation test. We found that p27/CDKN1B and cytochrome C showed at least a two-fold increase, while cyclooxygenase-2, indolamine-2,3-dioxygenase-1, serum paraoxonase 1, serum paraoxonase 3, serine-46-phosphorylated tumor protein p53, and superoxide-dismutase-2 showed a two-fold decrease in expression in the uninvolved skin. Over-representation analysis suggested the Forkhead-box protein O (FOXO)-mediated transcription as the most significant pathway affected by the differently expressed cell-stress-related proteins (DECSRPs). DECSRPs indicate increased FOXO-mediated transcription of cell-cycle genes and reduced interleukin-signaling in the psoriatic uninvolved skin. Nuclear positivity of the FOXO-signaling-related p27/CDKN1B and FOXO1 are negatively correlated with the disease severity and showed increased expression in the uninvolved epidermis and also in healthy primary keratinocytes, which were grown on cartilage oligomeric matrix protein-coated surfaces. Our results indicate a cell-cycle inhibitory process, as a stress-related compensatory mechanism in the uninvolved epidermis, that could be responsible for blocking keratinocyte hyperproliferation in the psoriatic uninvolved skin, thus maintaining the symptomless skin phenotype.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-54-64-02
| | - Judit Danis
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
| | - Dániel László Vidács
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (J.D.); (L.B.F.); (D.L.V.); (L.K.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| |
Collapse
|
11
|
Bozó R, Flink LB, Belső N, Gubán B, Széll M, Kemény L, Bata-Csörgő Z. Could basement membrane alterations, resembling micro-wounds at the dermo-epidermal junction in psoriatic non-lesional skin, make the skin susceptible to lesion formation? Exp Dermatol 2021; 30:765-772. [PMID: 33348435 DOI: 10.1111/exd.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Current data suggest that tissue microenvironment control immune functions. Therefore, understanding the tissue environment in which immune activation occurs will enhance our capability to interfere with abnormal immune pathology. Here, we argue that studying the constitutively abnormal functions of clinically uninvolved psoriatic skin in patients with plaque type psoriasis is very important to better understand psoriasis pathobiology, because non-lesional skin provides the tissue environment in which the psoriatic lesion develops. A key question in psoriasis is what initiates the abnormal, uncontrolled immune activation in the first place and the answer may lie in the skin. In light of this concept, we summarize abnormalities at the dermal-epidermal junction region which shows a special "non-healing-like" micro-wound phenotype in the psoriatic non-lesional skin that may act as a crucial susceptibility factor in the development of the disease.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Nóra Belső
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Barbara Gubán
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| |
Collapse
|