1
|
Huang C, Li W, Zhao S, Zhang W, Yu B. Paxbp1 is Indispensable for the Maintenance of Hair Follicle Homeostasis. Acta Derm Venereol 2025; 105:adv43648. [PMID: 40390261 DOI: 10.2340/actadv.v105.43648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Affiliation(s)
- Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Wenting Li
- The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai' an, Jiangsu, China
| | - Shizheng Zhao
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Guo Z, Liu X, Xia Y, Wang J, Li J, Wang L, Li Y, Jia S, Sun Y, Feng J, Huang J, Dong Y, Wang L, Li X. Assembly of Recombinant Proteins into β-Sheet Fibrillating Peptide-Driven Supramolecular Hydrogels for Enhanced Diabetic Wound Healing. ACS Biomater Sci Eng 2025; 11:228-238. [PMID: 39651554 DOI: 10.1021/acsbiomaterials.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins. We first investigated the assembly properties of Q11 and assessed its stability under varying pH and temperature conditions by combining Q11 with two β-tail fused fluorescent proteins. The results showed that Q11 enhanced the tolerance of the fluorescent proteins to changes in pH and temperature. Building upon these findings, we designed collagen-like proteins and Sonic Hedgehog-fused recombinant proteins (CLP-Shh) that could be assembled with Q11 to form peptide-protein supramolecular hydrogels. These hydrogels demonstrated the ability to improve cell viability and migration and upregulate key markers of cell growth. Further in vivo studies revealed that the Q11-driven supramolecular hydrogel effectively enhances diabetic wound healing and epidermal regeneration by promoting the expression of epidermal-related proteins and immune factors. This study highlights the potential of supramolecular hydrogels for clinical applications and their promise in the development of biofunctional hydrogels for therapeutic use.
Collapse
Affiliation(s)
- Zhao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Liping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yinan Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jian Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jingxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yuxin Dong
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Liyao Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| |
Collapse
|
4
|
Lim CH, Kaminaka A, Lee SH, Moore S, Cronstein BN, Rabbani PS, Ito M. Dermal β-Catenin Is Required for Hedgehog-Driven Hair Follicle Neogenesis. J Invest Dermatol 2025; 145:42-49.e2. [PMID: 38810955 PMCID: PMC11599465 DOI: 10.1016/j.jid.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Hair follicle neogenesis (HFN) occurs after large skin excisions in mice, serving as a rare regenerative model in mammalian wound healing. Wound healing typically results in fibrosis in mice and humans. We previously showed that small skin excisions in mice result in scarring devoid of HFN, displaying features of nonregenerative healing, and hedgehog (Hh) activation in the dermis of such wounds can induce HFN. In this study, we sought to verify the role of dermal Wnt/β-catenin signaling in HFN because this pathway is essential for hair follicle development but is also paradoxically well-characterized in fibrosis of adult wounds. By deletion of β-catenin in large wound myofibroblasts, we show that Wnt/β-catenin signaling is required for endogenous mechanisms of HFN. By utilizing a combined mouse model that simultaneously induces deletion of β-catenin and constitutive activation of Smoothened in myofibroblasts, we also found that β-catenin is required for Hh-driven dermal papilla formation. Transcriptome analysis confirms that Wnt/β-catenin and Hh pathways are activated in dermal papilla cells. Our results indicate that Wnt-active fibrotic status may also create a permissive state for the regenerative function of Hh, suggesting that activation of both Wnt and Hh pathways in skin wound fibroblasts must be ensured in future strategies to promote HFN.
Collapse
Affiliation(s)
- Chae Ho Lim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA.
| | - Annette Kaminaka
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Soung-Hoon Lee
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Simone Moore
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- NYU-H+H Clinical and Translational Science Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Liu Y, Zhou M, Sun J, Yao E, Xu J, Yang G, Wu X, Xu L, Du J, Jiang X. Programmed BRD9 Degradation and Hedgehog Signaling Activation via Silk-Based Core-Shell Microneedles Promote Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404130. [PMID: 39413023 PMCID: PMC11615742 DOI: 10.1002/advs.202404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Indexed: 10/18/2024]
Abstract
Wound healing impairment in diabetes mellitus is associated with an excessive inflammatory response and defective regeneration capability with suppressed Hedgehog (Hh) signaling. The bromodomain protein BRD9, a subunit of the non-canonical BAF chromatin-remodeling complex, is critical for macrophage inflammatory response. However, whether the epigenetic drug BRD9 degrader can attenuate the sustained inflammatory state of wounds in diabetes remains unclear. Without a bona fide immune microenvironment, Hh signaling activation fails to effectively rescue the suppressed proliferative ability of dermal fibroblasts and the vascularization of endothelial cells. Therefore, a silk-based core-shell microneedle (MN) patch is proposed to dynamically modulate the wound immune microenvironment and the regeneration process. Specifically, the BRD9 degrader released from the shell of the MNs mitigated the excessive inflammatory response in the early phase. Subsequently, the positively charged Hh signaling agonist is released from the negatively charged core of the silk fibroin nanofibers and promotes the phase transition from inflammation to regeneration, including re-epithelialization, collagen deposition, and angiogenesis. These findings suggest that the programmed silk-based core-shell MN patch is an ideal therapeutic strategy for effective skin regeneration in diabetic wounds.
Collapse
Affiliation(s)
- Yili Liu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Mingliang Zhou
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jinrui Sun
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Enhui Yao
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jingyi Xu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Guangzheng Yang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Xiaolin Wu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Ling Xu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jiahui Du
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Xinquan Jiang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| |
Collapse
|
6
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
7
|
Li Z, Ma R, Tan J, Li C, Xiao Y, Qiu X, Jin S, Ouyang P, Zhao Y, Xiang X, Wu W. Hormonal interventions in skin wounds - a mini review. Mol Med 2024; 30:217. [PMID: 39543465 PMCID: PMC11566089 DOI: 10.1186/s10020-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
The ability to heal from wounds is perhaps the most important biological function that ensures our survival and perpetuation. Cutaneous wound healing typically consists of four characteristic stages, namely hemostasis, inflammation, proliferation, and remodeling, which are carefully carried out by coordinated actions of various cells, cytokines, and hormones. Incoordination of these steps may impede complete and efficient reconstruction and functional recovery of wounds or even lead to worsened outcomes. Hormones, as powerful modulators of organ functions, participate in multiple steps of the wound healing process and play a pivotal role by choreographing the complex interplay of cellular and molecular events. Leveraging the regulatory effects of hormones to enhance the healing process, hormonal therapy has emerged as a promising approach in the clinical treatment of wounds. Current research has focused on determination of the optimal dosages, delivery methods, and combinations of hormonal therapies to maximize their therapeutic benefits while minimizing potential side effects. This review highlights the molecular mechanisms, clinical benefits and side effects of the most commonly used hormones in clinical treatment of wounds.
Collapse
Affiliation(s)
- Zeming Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Ma
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Jiajun Tan
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunmeng Li
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China
| | - Yang Xiao
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xudong Qiu
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Shuo Jin
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yiping Zhao
- China Medical University, Shenyang, 110001, China.
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110001, China.
| | - Xiao Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Wang Wu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China.
- Three Gorges Hospital of Chongqing University, Chongqing, 400004, China.
| |
Collapse
|
8
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
11
|
Chen FZ, Tan PC, Yang Z, Li Q, Zhou SB. Identifying characteristics of dermal fibroblasts in skin homeostasis and disease. Clin Exp Dermatol 2023; 48:1317-1327. [PMID: 37566911 DOI: 10.1093/ced/llad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous dermal fibroblasts are the main components that constitute the dermis. Distinct fibroblast subgroups show specific characteristics and functional plasticity that determine dermal structure during skin development and wound healing. Although researchers have described the roles of fibroblast subsets, this is not completely understood. We review recent evidence supporting understanding about the heterogeneity of fibroblasts. We summarize the origins and the identified profiles of fibroblast subpopulations. The characteristics of fibroblast subpopulations in both healthy and diseased states are highlighted, and the potential of subpopulations to be involved in wound healing in different ways was discussed. Additionally, we review the plasticity of subpopulations and the underlying signalling mechanisms. This review may provide greater insights into potential novel therapeutic targets and tissue regeneration strategies for the future.
Collapse
Affiliation(s)
- Fang-Zhou Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zihan Yang
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Zhu J, Chen P, Liang J, Wu Z, Jin H, Xu T, Zheng Y, Ma H, Cong W, Wang X, Guan X. Inhibition of CK2α accelerates skin wound healing by promoting endothelial cell proliferation through the Hedgehog signaling pathway. FASEB J 2023; 37:e23135. [PMID: 37594910 DOI: 10.1096/fj.202300478rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Diabetes is a chronic disease characterized by perturbed glucose and lipid metabolism, resulting in high blood glucose levels. Many complications induced by endothelial dysfunction can cause disability and even death of diabetic patients. Here, we found that the protein level of casein kinase 2α (CK2α) was increased in the endothelium of mice with type I diabetes (T1D) induced by streptozotocin (STZ) injection. Although a potential correlation between the protein level of CK2α and endothelial dysfunction in diabetes was established, the contribution of CK2α to the progression of endothelial dysfunction in diabetes remained largely unknown. By using CX4945 (a selective CK2α antagonist) and Si-csnk2a1 (small interfering RNA targeting CK2α), we found that inhibition of CK2α accelerated skin wound healing in T1D mice by promoting proliferation of endothelial cells. Administration of CX4945 or Si-csnk2a1 rescued the impaired Hedgehog signaling pathway in high glucose-treated human umbilical vein endothelial cells (HUVECs). Exploration of the underlying molecular mechanism revealed that the protective effect of CK2α inhibition on angiogenesis, which contributes to skin wound healing in diabetic mice, was blocked by administration of GANT61 (an inhibitor targeting the Hedgehog signaling pathway). Our findings establish CK2α as a regulator of endothelial dysfunction in diabetes and demonstrate that inhibition of CK2α accelerates skin wound healing in T1D mice by promoting endothelial cell proliferation via the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiaojiao Liang
- Department of Pathology, Huaihe hospital of Henan University, kaifeng, Henan Province, P.R. China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yeyi Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Hongfang Ma
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
13
|
Bensa T, Tekkela S, Rognoni E. Skin fibroblast functional heterogeneity in health and disease. J Pathol 2023; 260:609-620. [PMID: 37553730 DOI: 10.1002/path.6159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
Fibroblasts are the major cell population of connective tissue, including the skin dermis, and are best known for their function in depositing and remodelling the extracellular matrix. Besides their role in extracellular matrix homeostasis, fibroblasts have emerged as key players in many biological processes ranging from tissue immunity and wound healing to hair follicle development. Recent advances in single-cell RNA-sequencing technologies have revealed an astonishing transcriptional fibroblast heterogeneity in the skin and other organs. A key challenge in the field is to understand the functional relevance and significance of the identified new cell clusters in health and disease. Here, we discuss the functionally distinct fibroblast subtypes identified in skin homeostasis and repair and how they evolve in fibrotic disease conditions, in particular keloid scars and cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tjaša Bensa
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Tekkela
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Shin JM, Lee YY, Kim KM, Won KS, Suh SB, Hong D, Jung KE, Kim CD, Seo YJ, Cho SB, Lee Y. The potential role of fibroblast-derived multi-peptide factors in activation of growth factors and β-Catenin in hair follicle cells. J Cosmet Dermatol 2022; 21:6184-6190. [PMID: 35765799 DOI: 10.1111/jocd.15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dermal fibroblasts play a pivotal role in hair follicle regeneration during wound repair. Recently, dermal fibroblast-conditioned medium (DFCM), which contains multi-peptide factors (MPFs), has been used to promote wound repair. AIM This study aimed to investigate the stimulatory effects of MPF-containing DFCM on hair growth. METHODS MPF-containing DFCM was prepared using human neonatal dermal fibroblasts. Outer root sheath (ORS) and dermal papilla (DP) cells were cultured in MPF-containing DFCM. We examined the expression and secretion of growth factors and cytokines using quantitative polymerase chain reaction and a growth factor array. In addition, the effect of MPFs on β-catenin activity was determined using the TOPflash assay. All experiments were repeated at least three times with separate batches of cells. RESULTS MPF-containing DFCM increased keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) mRNA expression in ORS cells and KGF and VEGF mRNA expression in DP cells. When ORS cells were treated with MPF-containing DFCM, the secretion of several growth factors, including EGF, VEGF, insulin-like growth factor-binding protein (IGFBP)-4, IGFBP-6, and fibroblast growth factor-7, was increased in the cell-cultured medium compared with that in control. Additionally, MPF-containing DFCM increased the transcriptional activation of β-catenin in DP cells. CONCLUSIONS These results suggest that MPF-containing DFCM might stimulate hair growth by inducing growth factors in ORS and DP cells and regulating β-catenin in DP cells.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Yoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, South Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
16
|
He J, Huang X, Zhao B, Liu G, Tian Y, Zhang G, Wei C, Mao J, Tian K. Integrated analysis of miRNAs and mRNA profiling reveals the potential roles of miRNAs in sheep hair follicle development. BMC Genomics 2022; 23:722. [PMID: 36273119 PMCID: PMC9588206 DOI: 10.1186/s12864-022-08954-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Merino sheep exhibit high wool production and excellent wool quality. The fleece of Merino sheep is predominantly composed of wool fibers grown from hair follicles (HFs). The HF is a complex biological system involved in a dynamic process governed by gene regulation, and gene expression is regulated by microRNAs (miRNAs). miRNA inhibits posttranscriptional gene expression by specifically binding to target messenger RNA (mRNA) and plays an important role in regulating gene expression, the cell cycle and biological development sequences. The purpose of this study was to examine mRNA and miRNA binding to identify key miRNAs and target genes related to HF development. This will provide new and important insights into fundamental mechanisms that regulate cellular activity and cell fate decisions within and outside of the skin. RESULTS We analyzed miRNA data in skin tissues collected from 18 Merino sheep on four embryonic days (E65, E85, E105 and E135) and two postnatal days (D7 and D30) and identified 87 differentially expressed miRNAs (DE-miRNAs). These six stages were further divided into two longer developmental stages based on heatmap cluster analysis, and the results showed that DE-mRNAs in Stage A were closely related to HF morphogenesis. A coanalysis of Stage A DE-mRNAs and DE-miRNAs revealed that 9 DE-miRNAs and 17 DE-mRNAs presented targeting relationships in Stage A. We found that miR-23b and miR-133 could target and regulate ACVR1B and WNT10A. In dermal fibroblasts, the overexpression of miR-133 significantly reduced the mRNA and protein expression levels of ACVR1B. The overexpression of miR-23b significantly reduced the mRNA and protein expression levels of WNT10A. CONCLUSION This study provides a new reference for understanding the molecular basis of HF development and lays a foundation for further improving sheep HF breeding. miRNAs and target genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine-wool sheep.
Collapse
Affiliation(s)
- Junmin He
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guifen Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Guoping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chen Wei
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Kechuan Tian
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
17
|
Bu T, Zhang M, Lee SH, Cheong YE, Park Y, Kim KH, Kim D, Kim S. GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types. Metabolites 2022; 12:metabo12080717. [PMID: 36005589 PMCID: PMC9415232 DOI: 10.3390/metabo12080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Skin has heterogenous identities on different body sites despite similar cellular compositions. There are two types of skin, volar (palmoplantar) and non-volar (dorsal), which are characterized by epidermal thickness, pigmentation, and presence of hair follicles. However, the mechanisms underlying the development of these different skin types remain unclear. To investigate these, we profiled the cellular metabolites of volar and non-volar skin in mice using gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS), and further assessed the metabolic differences between them. In total, 96 metabolites from both volar and non-volar skin of mice were identified using the BinBase database system. Metabolomics analysis revealed important differences associated with amino acid metabolism (phenylalanine, tyrosine, and tryptophan biosynthesis; aspartate and glutamate metabolism), sugar metabolism (pentose phosphate pathway), and nucleotide metabolism (pyrimidine metabolism) in volar skin. Fifty metabolites were identified as potential biomarkers differentiating the physiological characteristics of these skin types. Of these, nine were highly increased whereas 41 were significantly decreased in volar skin compared with those in non-volar skin. Overall, these results provide valuable information for understanding the metabolic differences between volar and non-volar skin.
Collapse
Affiliation(s)
- Ting Bu
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea; (T.B.); (M.Z.)
- University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-Resources in Gan-Su Province, College of Life Sciences and Technology, Longdong University, Qingyang 745000, China
| | - Ming Zhang
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea; (T.B.); (M.Z.)
| | - Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Yukyung Park
- Graduate School of Energy/Biotechnology, Dongseo University, Busan 47011, Korea;
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Dongwon Kim
- Graduate School of Energy/Biotechnology, Dongseo University, Busan 47011, Korea;
- Department of Bio-Pharmaceutical Engineering, Dongseo University, Busan 47011, Korea
- Correspondence: (D.K.); (S.K.); Tel.: +82-51-320-1972 (D.K.); +82-63-220-2384 (S.K.)
| | - Sooah Kim
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea; (T.B.); (M.Z.)
- Correspondence: (D.K.); (S.K.); Tel.: +82-51-320-1972 (D.K.); +82-63-220-2384 (S.K.)
| |
Collapse
|
18
|
Rognoni E. Dermal Hedgehog Signaling in Papillary Fibroblasts: An Emerging Key Player in Skin Regeneration. J Invest Dermatol 2022; 142:1516-1519. [PMID: 35027172 DOI: 10.1016/j.jid.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Wound repair involves the coordination of multiple skin cells and signaling pathways, and it results in tissue regeneration or scarring. In their article in the Journal of Investigative Dermatology, Frech et al., (2021) explore how Hedgehog (Hh) signaling influences the function of fibroblasts residing in the papillary and reticular dermis during wound healing. Their results reveal a pivotal role for Hh signaling in papillary fibroblasts related to hair follicle regeneration, which could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|