1
|
Moreira Silva EZ, Rodrigues AC, Kohler AF, Cruz JV, Prado KB, Gradia DF, de Oliveira DP, Pestana CB, Leme DM. Evaluating dermal toxicity of the flame retardant aluminum diethylphosphinate by in silico-in vitro testing strategy. CHEMOSPHERE 2025; 379:144421. [PMID: 40286754 DOI: 10.1016/j.chemosphere.2025.144421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Flame retardants (FRs) are a group of chemicals used in different products to improve fire safety; however, many of them negatively impact human health, encouraging the use of safer alternatives. The aluminum diethylphosphinate (AlPi) is one of the potential alternatives to harmful FRs; however, close data gaps on human toxicity and enhanced mechanistic understanding are still needed. This study evaluated the dermal toxicity potential of AlPi using in silico models (OECD QSAR Toolbox, Toxtree) and a multi-biomarkers approach with human keratinocyte models (HaCaT cell line and reconstructed human epidermis (RHE) model). Our findings revealed no significant increases in reactive oxygen species (ROS, H2DCFDA) or pro-inflammatory cytokines (IL-6, IL-8, IL-10, IL-1β, IL12p70, TNF) in HaCaT cells exposed to AlPi at non-cytotoxic concentrations (30, 60, 120 μg/ml). This suggests that AlPi does not induce oxidative stress or inflammatory responses in the skin. Additionally, in silico predictions and in vitro assays (HaCaT - IL-6; OECD TG 439 with SkinVitro-RHE) did not classify AlPi as a skin sensitizer or skin irritant. Regarding changes in DNA, AlPi-exposed HaCaT cells did not show significant levels of γ-H2AX; however, this FR increased the level of 5-hydroxymethylcytosine (5-hmC) and TET1 expression, which is a gene involved in the regulation of the DNA methylation. In summary, most biomarker responses indicated that AlPi poses minimal toxic effects on the skin; however, further research is needed to understand better the biological consequences of its effect on DNA methylation.
Collapse
Affiliation(s)
| | | | - Ana Flávia Kohler
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Juliana Varella Cruz
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karin Braun Prado
- Department of Basic Pathology, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang R, Dai X, Chen W, Wang J, Wang H, Yan X, Zhang W, Fan Q, Li L, Wang J, Meng J. Matrix Metalloproteinase 9 Plays a Crucial Role in Inflammation and Itch in Allergic Contact Dermatitis by Regulating Toll-Like Receptor 2/1 Signaling. J Invest Dermatol 2024; 144:1893-1897.e6. [PMID: 38296022 DOI: 10.1016/j.jid.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Ruizhen Wang
- School of Life Sciences, Henan University, Henan, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jinhai Wang
- School of Life Sciences, Henan University, Henan, China
| | - Haoran Wang
- School of Life Sciences, Henan University, Henan, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, Henan, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, Henan, China
| | - Lianlian Li
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|