1
|
Balaji SK, Balasundarasekar B, Khuwaja WM, Dolan KM, Dong X. Antimicrobial Peptide Signaling in Skin Diseases. JID INNOVATIONS 2025; 5:100354. [PMID: 40104692 PMCID: PMC11914806 DOI: 10.1016/j.xjidi.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) are important innate immune molecules at microbe-host interfaces. The biophysical properties of AMPs that facilitate direct killing of microbes have been extensively reviewed. In this article, we focus on how AMPs perform immunomodulatory functions through interaction with host receptors on epithelial, immune, and neuronal cell types. We summarize the current knowledge of known AMPs in the skin, the receptors that respond to AMPs, and the downstream intracellular signaling pathways. In the end, we discuss the roles of AMP signaling systems in skin diseases.
Collapse
Affiliation(s)
- Sharan Kumar Balaji
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Waris Muhammad Khuwaja
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Keean Michael Dolan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Xintong Dong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
Ikeda A, Peng G, Zhao W, Abudouwanli A, Ikeda S, Niyonsaba F, Suzuki Y. Impact of atopic dermatitis on renal dysfunction: insights from patient data and animal models. Front Immunol 2025; 16:1558596. [PMID: 40191205 PMCID: PMC11968387 DOI: 10.3389/fimmu.2025.1558596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, immune dysregulation, and compromised skin barrier function. Although there are some reports that indicate a link between AD and chronic kidney disease (CKD), the prevalence and underlying mechanism of the association between AD and CKD are still unclear. We aimed to clarify the mechanism underlying the association between AD and CKD using an AD-like mouse model. Methods Human serum and urine samples from adults in the U.S. were analyzed using data from the National Health and Nutrition Examination Survey (NHANES). An AD-like mouse model was established by repeatedly applying 2,4-dinitrochlorobenzene to the backs and ears of the mice. Kidney inflammation and podocyte function were evaluated via PAS and H&E staining, immunofluorescence staining, and electron microscopy. Results We found that compared to healthy subjects in the NHANES cohort study, patients with AD had altered kidney function. AD-like model mice exhibited albuminuria and renal dysfunction one to three months after the induction of AD. In addition, there were remarkable decreases in triglyceride and very-low-density lipoprotein levels and increases in low-density lipoprotein and non-high-density lipoprotein levels in AD-like model mice. After histological staining of the kidneys of AD-like model mice, macrophage and neutrophil infiltration was detected, and the foot process effacement of podocytes was observed via electron microscopy. In addition, the gene expression of slit diaphragm- and podocyte-related proteins such as nephrin, podocin, and synaptopodin decreased, whereas the gene expression of inflammatory mediators such as S100A8 and S100A9 increased. Discussion Following improvements in skin inflammation, alleviation of albuminuria, renal dysfunction and dyslipidemia were observed. These findings suggest that AD-related cutaneous inflammation is associated with albuminuria and podocyte dysfunction.
Collapse
Affiliation(s)
- Arisa Ikeda
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wanchen Zhao
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alafate Abudouwanli
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Peng G, Zhao W, Abudouwanli A, Sun Q, Yang M, Wang S, Tan Y, Ikeda A, Ikeda S, Ogawa H, Okumura K, Niyonsaba F. Improvement of atopic dermatitis-like symptoms in a murine model via the chromogranin A-derived peptide catestatin. Allergol Int 2025:S1323-8930(25)00006-1. [PMID: 39986986 DOI: 10.1016/j.alit.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is characterized by compromised skin barrier and heightened immune responses. The study investigates the therapeutic efficacy of catestatin (CST), a chromogranin A-derived antimicrobial peptide, in mitigating AD-like symptoms. METHODS Utilizing both keratinocyte cultures and a C57BL/6 mouse model, we examined CST's impact on skin barrier proteins, tight junction (TJ) integrity, inflammatory cytokines, and AD-like symptoms. RESULTS CST administration led to a significant upregulation of skin barrier proteins and improved TJ function, counteracting the negative effects of Th2 cytokines on these parameters. In a 2,4-dinitrochlorobenzene-induced AD mouse model, CST treatment markedly reduced AD-like symptoms, including ear thickness, transepidermal water loss, and scratching behavior, and normalized barrier protein expression and TJ barrier function. Furthermore, CST was found to interact with the Notch1 receptor, activating the Notch1/PKC pathway, which may underlie its skin barrier-enhancing properties. CONCLUSIONS Collectively, these findings suggest CST as a promising therapeutic agent for AD, capable of enhancing skin barrier function, modulating immune responses, and targeting the Notch1/PKC pathway, offering a novel approach to AD treatment focusing on barrier restoration and immune modulation.
Collapse
Affiliation(s)
- Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Wanchen Zhao
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alafate Abudouwanli
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mengyao Yang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Tan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arisa Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
4
|
Stocks B, Quesada JP, Mozzicato AM, Jacob C, Jensen S, MacGregor KA, Bangsbo J, Zierath JR, Hostrup M, Deshmukh AS. Temporal dynamics of the interstitial fluid proteome in human skeletal muscle following exhaustive exercise. SCIENCE ADVANCES 2025; 11:eadp8608. [PMID: 39889004 PMCID: PMC11784852 DOI: 10.1126/sciadv.adp8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025]
Abstract
The skeletal muscle interstitial space is the extracellular region around myofibers and mediates cross-talk between resident cell types. We applied a proteomic workflow to characterize the human skeletal muscle interstitial fluid proteome at rest and in response to exercise. Following exhaustive exercise, markers of skeletal muscle damage accumulate in the interstitial space followed by the appearance of immune cell-derived proteins. Among the proteins up-regulated after exercise, we identified cathelicidin-related antimicrobial peptide (CAMP) as a bioactive molecule regulating muscle fiber development. Treatment with the bioactive peptide derivative of CAMP (LL-37) resulted in the growth of larger C2C12 skeletal muscle myotubes. Phosphoproteomics revealed that LL-37 activated pathways central to muscle growth and proliferation, including phosphatidylinositol 3-kinase, AKT serine/threonine kinase 1, mitogen-activated protein kinases, and mammalian target of rapamycin. Our findings provide a proof of concept that the interstitial fluid proteome is quantifiable via microdialysis sampling in vivo. These data highlight the importance of cellular communication in the adaptive response to exercise.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Julia Prats Quesada
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony M. Mozzicato
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Jacob
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstin A. MacGregor
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rekha RS, Padhi A, Frengen N, Hauenstein J, Végvári Á, Agerberth B, Månsson R, Guðmundsson GH, Bergman P. The di-leucine motif in the host defense peptide LL-37 is essential for initiation of autophagy in human macrophages. Cell Rep 2025; 44:115031. [PMID: 39708316 DOI: 10.1016/j.celrep.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
The human cathelicidin peptide LL-37 induces autophagy in human macrophages. Different post-translational modifications (PTMs) such as citrullination, acetylation, and formylation impact LL-37, yet their effect on autophagy remains unknown. Thus, we set out to study how the cellular source could impact PTM of LL-37 and subsequent effects on autophagy initiation. Neutrophil-released LL-37 failed to induce autophagy, unlike macrophage-released LL-37. Mass spectrometry analysis revealed modifications on neutrophil-derived LL-37, especially at the N terminus, while macrophage-derived LL-37 remained mostly native. Native LL-37 initiated autophagy, while formylated and acetylated versions did not. Truncated peptides lacking the N-terminal di-leucine motif or substituted with di-alanine did not initiate autophagy. Native LL-37 failed to initiate autophagy in macrophages with genetic inactivation of dipeptidyl peptidase-1. An intact N-terminal di-leucine motif in LL-37 was crucial for autophagy initiation, and modifications abrogated the effects. This pathway presents a novel way to regulate the effects of LL-37 in infection or inflammation.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Avinash Padhi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Guðmundur H Guðmundsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Keshri AK, Rawat SS, Chaudhary A, Sharma S, Kapoor A, Mehra P, Kaur R, Mishra A, Prasad A. LL-37, the master antimicrobial peptide, its multifaceted role from combating infections to cancer immunity. Int J Antimicrob Agents 2025; 65:107398. [PMID: 39643165 DOI: 10.1016/j.ijantimicag.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antimicrobial peptides (AMPs) represent a unique group of naturally occurring molecules having diverse biological activities, including potent antimicrobial properties. Among them, LL-37 has emerged as a significant player, demonstrating its multifaceted roles during bacterial, fungal, and viral infections, as well as exhibiting intriguing implications in cancer. This review delves into the versatile functions of LL-37, elucidating its mechanisms of action against microbial pathogens and its potential to modulate immune responses. We explored the efficacy of LL-37 in disrupting bacterial membranes, inhibiting fungal growth, and interfering with viral replication, highlighting its potential as a therapeutic agent against a wide array of infectious diseases. Furthermore, we discussed the emerging role of LL-37 in cancer immunity, where its immunomodulatory effects and direct cytotoxicity towards cancer cells offer novel avenues for cancer therapy in the near future. We provided a comprehensive overview of the activities of LL-37 across various diseases and underscored the importance of further research into harnessing the therapeutic potential of this potential antimicrobial peptide along with other suitable candidates.
Collapse
Affiliation(s)
- Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Swati Sharma
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ananya Kapoor
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India; Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
7
|
Wang X, Xue Y, Zhu H, Zhang J, Li M, Ge W, Luo Z, Yuan X, Zhang D, Ma W. Ferulic Acid in the Treatment of Papulopustular Rosacea: A Randomized Controlled Study. J Cosmet Dermatol 2025; 24:e16611. [PMID: 39413013 PMCID: PMC11743247 DOI: 10.1111/jocd.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Rosacea is a chronic inflammatory skin disease characterized by flushing, erythema, papules, and pustules on the central face. It affects patient appearance and is noted for its chronicity, recurrence, and resistance to treatment. Effective rosacea treatment requires repairing the skin barrier, reducing inflammation, and promoting vasoconstriction. AIMS This study aims to evaluate the efficacy of topical ferulic acid in treating papulopustular rosacea and its impact on skin barrier function. METHODS Sixty patients with mild to moderate papulopustular rosacea were selected from the Department of Dermatology at the Affiliated Hospital of Shandong Second Medical University between January 2023 and December 2023. Patients were randomly assigned to either a control group or an observation group, with 30 patients in each group. The observation group applied ferulic acid solution to the affected areas, while the control group used normal saline, both twice daily for 6 weeks. Both groups also received 0.1 g doxycycline hydrochloride tablets orally once daily. Skin lesions and skin barrier function were assessed using VISIA imaging and self-rating scales before and during treatment, and adverse reactions were recorded. RESULTS After 6 weeks, both skin lesion assessments and self-assessment scores improved significantly from baseline, with greater improvement in the observation group compared to the control group (p < 0.05). Indicators of skin barrier function and VISIA imaging results demonstrated the efficacy of ferulic acid in treating rosacea. The total effective rate was significantly higher in the observation group (80.00%) compared to the control group (63.33%) (p < 0.05). In the observation group, nine patients (30.00%) experienced a greasy sensation initially, one patient (3.33%) reported tingling and itching, and no serious adverse reactions were observed. CONCLUSIONS Ferulic acid is effective as an adjuvant treatment for papulopustular rosacea, significantly improving skin lesions and repairing skin barrier function with minimal adverse reactions.
Collapse
Affiliation(s)
- Xing Wang
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Yonghong Xue
- Yantai Xianse Trading Co., Ltd.YantaiShandongChina
| | - Hongzi Zhu
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Jingjie Zhang
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Meiling Li
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Wenxiu Ge
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Zengxiang Luo
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Xiangfeng Yuan
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Dong Zhang
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| | - Weiyuan Ma
- Department of DermatologyAffiliated Hospital of Shandong Second Medical UniversityWeifangShandongChina
| |
Collapse
|
8
|
Lesiak A, Paprocka P, Wnorowska U, Mańkowska A, Król G, Głuszek K, Piktel E, Spałek J, Okła S, Fiedoruk K, Durnaś B, Bucki R. Significance of host antimicrobial peptides in the pathogenesis and treatment of acne vulgaris. Front Immunol 2024; 15:1502242. [PMID: 39744637 PMCID: PMC11688235 DOI: 10.3389/fimmu.2024.1502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e., genetically distinct bacterial subgroups that play different roles in skin health and disease) diversity of the predominant skin bacterial commensal - Cutinbacterium acnes. Like in other dysbiotic disorders, an elevated expression of endogenous antimicrobial peptides (AMPs) is a hallmark of AV. AMPs, such as human β-defensins, cathelicidin LL-37, dermcidin, or RNase-7, due to their antibacterial and immunomodulatory properties, function as the first line of defense and coordinate the host-microbiota interactions. Therefore, AMPs are potential candidates for pharmaceutical prophylaxis or treating this condition. This study outlines the current knowledge regarding the importance of AMPs in AV pathomechanism in light of recent transcriptomic studies. In particular, their role in improving the tight junctions (TJs) skin barrier by activating the fundamental cellular proteins, such as PI3K, GSK-3, aPKC, and Rac1, is discussed. We hypothesized that the increased expression of AMPs and their patterns in AV act as a compensatory mechanism to protect the skin with an impaired permeability barrier. Therefore, AMPs could be key determinants in regulating AV development and progression, linking acne-associated immune responses and metabolic factors, like insulin/IGF-1 and PI3K/Akt/mTOR/FoxO1 signaling pathways or glucotoxicity. Research and development of anti-acne AMPs are also addressed.
Collapse
Affiliation(s)
- Agata Lesiak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Paulina Paprocka
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Angelika Mańkowska
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Clinical Microbiology, Holy-Cross Oncology Center of Kielce, Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
9
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Huang G, Wu X, Ji X, Peng Y, Wang J, Cai X, Wang Y, Yang E, Zhu L, Wu Y, Sun Q, Shen L, Sha W, Shen H, Wang F. LncRNA SNHG16 Inhibits Intracellular M. tuberculosis Growth Involving Cathelicidin Pathway, Autophagy, and Effector Cytokines Production. ACS OMEGA 2024; 9:43115-43128. [PMID: 39464459 PMCID: PMC11500371 DOI: 10.1021/acsomega.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Long noncoding small nucleolar RNA (LncRNA) host gene 16 (SNHG16) is associated with certain diseases, including cancers. However, its role and mechanism in Mycobacterium tuberculosis (Mtb) infection remain unclear. Here, we demonstrated that SNHG16 expression levels were suppressed in peripheral blood mononuclear cells (PBMCs) and CD14+ monocytes of tuberculosis (TB) patients. SNHG16 was up-regulated by acute Mtb infection of PBMCs from healthy control (HC) subjects. Such TB suppression of SNHG16 was consistent with an immunosuppressive-like state driven by IL-10 signaling as seen in TB patients. Notably, SNHG16 limited Mtb growth in macrophages/monocytes through autophagy and vitamin D receptor (VDR)-dependent cathelicidin (CAMP) antimicrobial pathways. Concurrently, SNHG16 was highly expressed in lymphocytes, including CD8+ and Vγ2 Vδ2 T-cell subsets in HCs. SNHG16 overexpression in lymphocytes allowed them to control Mtb infection in macrophages, and SNHG16 epigenetically increased the expression of anti-Mtb effector cytokines in lymphocytes by developing more accessible chromatin states in gene loci encoding IFN-γ, TNF-α, and Granzyme B. Furthermore, the adoptive transfer of SNHG16-overexpressing human PBMCs into Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, SNHG16 drove the induction of pleiotropic effector functions that inhibited intracellular Mtb growth in vitro and in vivo, serving as an immunotherapy target in TB.
Collapse
Affiliation(s)
- Guixian Huang
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Xiaocui Wu
- Department
of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xuejiao Ji
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Ying Peng
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Juechu Wang
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Xia Cai
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety
Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity,
Department of Medical Microbiology and Parasitology, School of Basic
Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yihui Wang
- Haide
College, Ocean University of China, Qingdao 266100, China
| | - Enzhuo Yang
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Liying Zhu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety
Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity,
Department of Medical Microbiology and Parasitology, School of Basic
Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Wu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety
Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity,
Department of Medical Microbiology and Parasitology, School of Basic
Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Sun
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Ling Shen
- Department
of Microbiology & Immunology and Center for Primate Biomedical
Research, University of Illinois College
of Medicine, Chicago, Illinois 60607, United States
| | - Wei Sha
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Hongbo Shen
- Shanghai
Clinical Research Center for Infectious Disease (tuberculosis), Shanghai
Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute
for Advanced Study, Tongji University School
of Medicine, Shanghai 200433, China
| | - Feifei Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety
Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity,
Department of Medical Microbiology and Parasitology, School of Basic
Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Nobeyama Y. Rosacea in East Asian populations: Clinical manifestations and pathophysiological perspectives for accurate diagnosis. J Dermatol 2024; 51:1143-1156. [PMID: 39126257 DOI: 10.1111/1346-8138.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Rosacea is a chronic inflammatory disorder primarily affecting the facial skin, prominently involving the cheeks, nose, chin, forehead, and periorbital area. Cutaneous manifestations encompass persistent facial erythema, phymas, papules, pustules, telangiectasia, and flushing. The pathogenesis of rosacea is associated with various exacerbating or triggering factors, including microbial infestation, temperature fluctuations, sunlight exposure, physical exertion, emotional stress, consumption of hot beverages and spicy foods, and exposure to airborne pollen. These environmental factors interact with genetic predispositions in the development of rosacea. The roles of the lipophilic microbiome, ultraviolet radiation, nociceptive responses, and vascular alterations have been proposed as significant factors in the pathogenesis. These insights contribute to understanding the anatomical specificity of facial involvement and the progressive nature of rosacea. East Asian skin, predominantly classified as Fitzpatrick skin phototypes III to IV, is characterized by relatively diminished skin barrier function and increased sensitivity to irritants. Airborne pollen exposure may particularly act as a trigger in East Asian individuals, possibly mediated through toll-like receptors. The lack of specificity in objective clinical and histopathological findings leads to diagnostic challenges for individuals with colored skin, including East Asians, particularly when erythema is the sole objective manifestation. An alternative diagnostic scheme may thus be necessary. A diagnostic approach emphasizing vascular manifestations and nociceptive symptoms potentially holds promise for individuals with darker skin tones. More research focusing on potential variations in skin physiology across different racial groups is essential to establish more effective diagnostic schemes applicable to both dark and light skin colors.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
14
|
Xi L, Du J, Xue W, Shao K, Jiang X, Peng W, Li W, Huang S. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 2024; 175:171183. [PMID: 38423213 DOI: 10.1016/j.peptides.2024.171183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.
Collapse
Affiliation(s)
- Liuqing Xi
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Trujillo-Paez JV, Peng G, Le Thanh Nguyen H, Nakamura M, Umehara Y, Yue H, Ikutama R, Takahashi M, Ikeda S, Ogawa H, Okumura K, Niyonsaba F. Calcitriol modulates epidermal tight junction barrier function in human keratinocytes. J Dermatol Sci 2024; 114:13-23. [PMID: 38448341 DOI: 10.1016/j.jdermsci.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The aberrant expression of tight junction (TJ) proteins play an important role in several diseases with impaired skin barriers, including atopic dermatitis, psoriasis, and chronic wounds. The evidence provided thus far suggests an important role of calcitriol in skin homeostasis. However, it is not known whether calcitriol improves the impaired skin barrier. OBJECTIVE To investigate the effect of calcitriol on TJ barrier function in human primary keratinocytes. METHODS Normal human primary keratinocytes were stimulated with calcitriol, and the expression of TJ-related proteins was measured by real-time PCR and Western blotting. Immunofluorescence was used to examine the intercellular distribution of TJ-related proteins. TJ barrier function was assessed by the transepithelial electrical resistance (TER) assay. RESULTS We demonstrated that calcitriol increased the expression levels of TJ-related proteins, including claudin-4, claudin-7, occludin, and zonula occludens (ZO)- 1. Calcitriol enhanced the distribution of TJ-related proteins at cellcell borders and induced the phosphorylation of pathways involved in the regulation of TJ barrier function, such as atypical protein kinase C (aPKC), Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt), as evidenced by the effects of specific inhibitors on the above pathways. Indeed, we confirmed that calcitriol enhanced TER in keratinocyte monolayers. CONCLUSION These findings showed that calcitriol could modify the expression of keratinocyte TJ proteins, contributing to the maintenance of homeostatic barrier function.
Collapse
Affiliation(s)
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Nakamura
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
16
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
17
|
Fisher GW, Travers JB, Rohan CA. Rosacea pathogenesis and therapeutics: current treatments and a look at future targets. Front Med (Lausanne) 2023; 10:1292722. [PMID: 38193038 PMCID: PMC10773789 DOI: 10.3389/fmed.2023.1292722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Rosacea is a chronic inflammatory skin condition associated with a significant health and economic burden from costs and loss of productivity due to seeking medical treatment. The disease encompasses multiple phenotypic manifestations involving a complex and multi-variate pathogenesis. Although the pathophysiology of rosacea is not completely understood, ongoing research is continually elucidating its mechanisms. In this review, current concepts of rosacea pathogenesis will be addressed which involve skin barrier and permeability dysfunction, the innate and adaptive immune systems, and the neurovascular system. More specifically, the cathelicidin pathway, transient potential receptor channels, mast cells, and the NLRP3 inflammasome pathway are various targets of current pharmacologic regimens. Future therapies may seek different mechanisms to act on current treatment targets, like the potential use of JAK/STAT inhibitors in ameliorating skin barrier dysfunction or TLR antagonists in alleviating cathelicidin mediated inflammation. Other potential treatments aim for entirely different molecular targets such as microvesicle particle mediated local and systemic inflammation. Ultimately rosacea is associated with a significant health and economic burden which warrants deeper research into its pathogenesis and resultant new treatment discovery.
Collapse
Affiliation(s)
- Garrett W. Fisher
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine (Dermatology), Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine (Dermatology), Dayton Veterans Administration Medical Center, Dayton, OH, United States
| |
Collapse
|
18
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|