1
|
You H, Liang Y. Atopic Dermatitis: The Relationship Between Immune Mediators and Skin Lipid Barrier. Clin Rev Allergy Immunol 2025; 68:49. [PMID: 40366491 DOI: 10.1007/s12016-025-09057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is prevalent worldwide with complex etiology. Skin barrier defects and abnormal immune activation are crucial in the occurrence and development of AD. In the classic model of the skin barrier, lipids are essential for the formation and maintenance of this barrier as a "mortar" component. However, abnormally activated immune responses promote the lipid barrier deficiency through the secretion of various types of immune mediators directly or indirectly. In this review, we first introduce the skin lipid barrier (SLB) under both normal and abnormal conditions, highlighting the contributions of lipids derived from keratinocytes and sebaceous glands (SGs). Subsequently, the relationships between the immune mediators of Th1, Th2, Th17, Th22, and other types (adipokines, prostaglandins, leukotrienes) and SLB are elaborated in turn. Finally, the therapies for restoring SLB to treat AD are summarized, with a focus on the restoration effect of dupilumab on SLB. We hope that this review will offer a comprehensive perspective for understanding the pathogenesis of lipid metabolism disorders and SLB deficiency caused by immune mediators in AD. It also aims to provide guidance for further research on targeting inflammatory mediators to restore SLB.
Collapse
Affiliation(s)
- Huayan You
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunsheng Liang
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Huang L, Zhou Y, Xiao H, Li Y, Zhou Z, Xiao Z, Tong Y, Hu K, Kuang Y, Shen M, Xiao Y, Chen X. Emerging Contaminants: An Important But Ignored Risk Factor for Psoriasis. Clin Rev Allergy Immunol 2025; 68:33. [PMID: 40121604 DOI: 10.1007/s12016-025-09043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Industrialization and modernization have changed the environment. A group of emerging contaminants (ECs) has been defined recently. Psoriasis, whose incidence has increased in recent years, is a relapsing immune-mediated disease carrying a heavy disease burden. The erythematous scaly plaque is a typical symptom and occurs on several parts of the body. In addition, psoriasis has many comorbidities, such as psoriatic arthritis, diabetes, and depression, damaging the quality of life of patients. IL-17, IL-12, IL-23, and TNF-alpha are important related cytokines. ECs can influence psoriasis through the immune system and inflammatory responses. Specific mechanisms include increasing pro-inflammatory cytokines such as TNF-α and IL-17, and activating immune cells such as macrophages. And for psoriasis patients, it is suggested to reduce the exposure of most ECs. However, the complex mechanisms involved have not been discussed together and concluded. In this review, we summarize the relationship between ECs and psoriasis, focusing on the immune system, especially the immune cells and cytokines. These results can help guide clinical treatment and long-term management of psoriasis.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yinli Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Hui Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Zhiru Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Ziyi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yixuan Tong
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Kun Hu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410008, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| |
Collapse
|
4
|
Eichenfield LF, Silverberg JI, Hebert AA, Boguniewicz M. Targeting the aryl hydrocarbon receptor as a strategy to expand the therapeutic armamentarium in atopic dermatitis. J DERMATOL TREAT 2024; 35:2300354. [PMID: 38213229 DOI: 10.1080/09546634.2023.2300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Affiliation(s)
| | - Jonathan I Silverberg
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adelaide A Hebert
- UTHealth McGovern School of Medicine and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Mark Boguniewicz
- National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
5
|
Silverberg JI, Boguniewicz M, Quintana FJ, Clark RA, Gross L, Hirano I, Tallman AM, Brown PM, Fredericks D, Rubenstein DS, McHale KA. Tapinarof validates the aryl hydrocarbon receptor as a therapeutic target: A clinical review. J Allergy Clin Immunol 2024; 154:1-10. [PMID: 38154665 DOI: 10.1016/j.jaci.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that has wide-ranging roles, including regulation of inflammation and homeostasis. AhR is not a cell surface receptor; rather, it exists in a cytoplasmic complex that responds to a wide variety of structurally dissimilar endogenous, microbial, and environmental ligands. The ubiquitous expression of AhR, its ability to be activated by a wide range of ligands, and its capacity to act as a master regulator for gene expression and homeostasis make it a promising new therapeutic target. Clinical trials of tapinarof cream have now validated AhR agonism as a therapeutic approach that can deliver significant efficacy for treating inflammatory skin diseases, including psoriasis and atopic dermatitis. Tapinarof 1% cream is a first-in-class, nonsteroidal, topical, AhR agonist with a pharmacokinetic profile that results in localized exposure at sites of disease, avoiding systemic safety concerns, drug interactions, or off-target effects. Psoriasis and atopic dermatitis both involve epidermal inflammation, cellular immune responses, dysregulation of skin barrier protein expression, and oxidative stress. On the basis of the clinical effectiveness of tapinarof cream for treating inflammatory skin diseases, we review how targeting AhR may offer a significant opportunity in other conditions that share key aspects of pathogenesis, including asthma, inflammatory bowel disease, eosinophilic esophagitis, ophthalmic, and nervous system diseases.
Collapse
Affiliation(s)
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | - Lara Gross
- Dallas Allergy and Asthma Center, and the Allergy and Immunology Division, Baylor University Medical Center, Dallas, Tex
| | - Ikuo Hirano
- Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | | | | | | | | |
Collapse
|
6
|
Prieto K, Duong JQ, Feldman SR. Tapinarof cream for the topical treatment of plaque psoriasis in adults. Expert Rev Clin Immunol 2024; 20:327-337. [PMID: 38117596 DOI: 10.1080/1744666x.2023.2296607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
INTRODUCTION Plaque psoriasis, a chronic immune-mediated skin disorder, is characterized by well-demarcated erythematous plaques with silvery scales. This condition stems from complex interactions between genetic predisposition, immune dysregulation, and environmental triggers. Tapinarof downregulates the cytokine IL-17, diminishes the inflammatory infiltrate, and provides antioxidant properties while enhancing the expression of skin barrier proteins. AREAS COVERED This review begins by assessing tapinarof's mechanism in treating plaque psoriasis. Subsequently, it examines the effectiveness and safety of tapinarof 1% cream in adult patients. EXPERT OPINION Tapinarof 1% cream, which works by activating the aryl hydrocarbon receptor, is an FDA-approved treatment for adult plaque psoriasis. This therapy introduces a novel, nonsteroidal method for addressing inflammation and skin barrier issues, potentially serving as an alternative to conventional treatments. The once-daily, convenient cream formulation and favorable safety profile may enhance patient adherence, which is often poor with topical treatments. Tapinarof also maintains disease clearance for a mean of 4 months after treatment cessation.
Collapse
Affiliation(s)
- Kaley Prieto
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jessica Q Duong
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Shin KO, Kim B, Choi Y, Bae YJ, Park JH, Park SH, Hwang JT, Choi EH, Uchida Y, Park K. Barrier Abnormalities in Type 1 Diabetes Mellitus: The Roles of Inflammation and Ceramide Metabolism. J Invest Dermatol 2024; 144:802-810.e5. [PMID: 37952608 DOI: 10.1016/j.jid.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Bokyung Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jin Bae
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
8
|
Park K, Uchida Y. Modulation of Aryl Hydrocarbon Receptor Can Be a Strategy to Improve Epidermal Barrier Function by Increasing Glucosylceramide Synthesis. J Invest Dermatol 2023; 143:1862-1864. [PMID: 37436335 DOI: 10.1016/j.jid.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
9
|
Issa NT, Kaiser M. First Use of Tapinarof Monotherapy for Seborrhoeic Dermatitis: A Case Report. Acta Derm Venereol 2023; 103:adv12343. [PMID: 37366562 DOI: 10.2340/actadv.v103.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Naiem T Issa
- Issa Research and Consulting, LLC, Springfield, VA.
| | - Michael Kaiser
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine Dr. Phillip Frost, Miami, USA
| |
Collapse
|