1
|
Wahid E, Ocheja OB, Oguntomi SO, Pan R, Grattieri M, Guaragnella N, Guaragnella C, Marsili E. Immobilized Saccharomyces cerevisiae viable cells for electrochemical biosensing of Cu(II). Sci Rep 2025; 15:2678. [PMID: 39838043 PMCID: PMC11751108 DOI: 10.1038/s41598-025-86702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity. Alternatively, semiconductive biocompatible coatings can be used for viable cell immobilization, achieving reproducible coverage and resulting in a stable biosensor response. In this work, we use a polydopamine (PDA)-based coating to immobilize Saccharomyces cerevisiae yeast viable cells on carbon screen printed electrodes (SPE) for Cu(II) detection, with potassium ferricyanide (K3[Fe (CN)6]) as a redox mediator. Under these conditions, the current output correlates with Cu (II) concentration, reaching a limit of detection of 2.2 µM, as calculated from the chronoamperometric response. The bioelectrochemical results are supported by standard viability assays, microscopy, and electrochemical impedance spectroscopy. The PDA coatings can be functionalised with different mutant strains, thus expanding the toolbox for biosensor design in bioremediation.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Sunday Olakunle Oguntomi
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Run Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Matteo Grattieri
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
- Institute for Physicochemical Processes (CNR-IPCF), National Research Council, Via E. Orabona 4, 70125, Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Cataldo Guaragnella
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
2
|
Fundamentals of Biosensors and Detection Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:3-29. [PMID: 35760986 DOI: 10.1007/978-3-031-04039-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.
Collapse
|
3
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
4
|
Olaifa K, Nikodinovic-Runic J, Glišić B, Boschetto F, Marin E, Segreto F, Marsili E. Electroanalysis of Candida albicans biofilms: A suitable real-time tool for antifungal testing. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Kim SM, Park HG, Song WS, Jo SH, Yang YH, Kim YG. LC–MS/MS based observation of Clostridium difficile inhibition by Lactobacillus rhamnosus GG. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Kumar M, Ghosh S, Nayak S, Das A. Recent advances in biosensor based diagnosis of urinary tract infection. Biosens Bioelectron 2016; 80:497-510. [DOI: 10.1016/j.bios.2016.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
|
8
|
|
9
|
Theranostics dye integrated zwitterionic polymer for in vitro and in vivo photothermal cancer therapy. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Acquah C, Danquah MK, Agyei D, Moy CKS, Sidhu A, Ongkudon CM. Deploying aptameric sensing technology for rapid pandemic monitoring. Crit Rev Biotechnol 2015; 36:1010-1022. [PMID: 26381238 DOI: 10.3109/07388551.2015.1083940] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
Collapse
Affiliation(s)
- Caleb Acquah
- a Curtin Sarawak Research Institute, Curtin University , Sarawak 98009 , Malaysia.,b Department of Chemical Engineering , Curtin University , Sarawak 98009 , Malaysia
| | - Michael K Danquah
- b Department of Chemical Engineering , Curtin University , Sarawak 98009 , Malaysia
| | - Dominic Agyei
- c Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University , Geelong-Waurn Ponds , Australia
| | - Charles K S Moy
- d Faculty of Engineering and Science , Curtin University , Sarawak 98009 , Malaysia
| | - Amandeep Sidhu
- a Curtin Sarawak Research Institute, Curtin University , Sarawak 98009 , Malaysia.,e Faculty of Health Sciences , Curtin University , Perth 6102 , Australia , and
| | - Clarence M Ongkudon
- f Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu , Sabah, 88400 , Malaysia
| |
Collapse
|
11
|
Forsberg EM, Sicard C, Brennan JD. Solid-phase biological assays for drug discovery. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:337-359. [PMID: 25000820 DOI: 10.1146/annurev-anchem-071213-020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.
Collapse
Affiliation(s)
- Erica M Forsberg
- Biointerfaces Institute, McMaster University, Hamilton, Ontario L8S 4L8, Canada;
| | | | | |
Collapse
|
12
|
Song J, Jang J, Cho Y, Jeong W, Park D, Jang A, Kwon S. WITHDRAWN: Effect of ventilation type on the transport of coughed particles in a hospital room using computational fluid dynamics. J IND ENG CHEM 2013. [DOI: 10.1016/j.jiec.2013.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wang J, Chen G, Jiang H, Li Z, Wang X. Advances in nano-scaled biosensors for biomedical applications. Analyst 2013; 138:4427-35. [DOI: 10.1039/c3an00438d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Xiao P, Lv X, Deng Y. Immobilization of Chymotrypsin on Silica Beads Based on High Affinity and Specificity Aptamer and Its Applications. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.673103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Development of a sensitive method for selection of affinity ligand for trypsin using quartz crystal microbalance sensor. Bioprocess Biosyst Eng 2011; 35:423-31. [DOI: 10.1007/s00449-011-0581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/06/2011] [Indexed: 12/28/2022]
|
16
|
Zhou X, Liu L, Hu M, Wang L, Hu J. Detection of hepatitis B virus by piezoelectric biosensor. J Pharm Biomed Anal 2002; 681:8-15. [PMID: 11682242 DOI: 10.1016/j.aca.2010.09.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/16/2023]
Abstract
A highly sensitive piezoelectric HBV DNA biosensor has been developed based on the sensitive mass-transducing function of the quartz crystal microbalance and the speciality of nucleic acid hybridization reaction. HBV nucleic acid probe was immobilized onto the gold electrodes of a 9 MHz AT-cut piezoelectric quartz crystal with the polyethyleneimine adhesion, glutaraldehyde cross-linking (PEI-Glu) method or the physical adsorption method. The coated crystal with the PEI-Glu method to immobilized HBV nucleic acid probe showed the better results than the physical adsorption method with respect to sensitivity reproducibility and stability. The frequency shifts of hybridization have better linear relationship with the amount of HBV DNA, when the amount was in range 0.02-0.14 microg/ml. The crystal could be regenerated nearly five times without perceptible decrease of sensitivity.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Department of Analysis-Measurement Science, Wuhan University, 430072, Wuhan, PR China
| | | | | | | | | |
Collapse
|