1
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
2
|
Choudhury SP, Haq I, Kalamdhad AS. Unleashing synergistic potential of microbially enhanced anaerobic co-digestion of petroleum refinery biosludge and yard waste: Impact of nutrient balance and microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132361. [PMID: 37659234 DOI: 10.1016/j.jhazmat.2023.132361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Petroleum refinery sludge, an egregious solid residue generated from the wastewater treatment plants poses an environmental hazard owing to its intricate hydrocarbon composition, necessitating competent treatment for secure disposal. The study proposes a green solution through anaerobic co-digestion of nitrogen-rich petroleum refinery sludge (PS) with carbon-rich yard waste (YW), balancing the nutrients and moisture content for efficient microbial proliferation. Using Central Composite Design-Response Surface Methodology, 1 L batch experiments were conducted with varying carbon/nitrogen (C/N) ratios and pH to achieve maximum biogas yield within 50 days of co-digestion. However, the sluggish biogas recovery (40%) indicated a slow rate-limiting hydrolysis, necessitating pretreatment. Feedstock incubation with Bacillus subtilis IH1 strain, isolated from the microbially-enriched PS, at 108 colony forming units (CFU) per mL for 5 days maximized the soluble chemical oxygen demand and volatile fatty acids by 2.2 and 1.4 folds respectively compared to untreated feedstock. Scale-up Bacillus subtilis aided co-digestion studies further augmented biogas by 76% against untreated monodigestion of PS with significant total petroleum hydrocarbons, emulsions, and lignocellulosic degradation. Further identification of major organic pollutants in the batch digestate revealed significant degradation of the toxic organic hydrocarbon pollutants apotheosizing the efficacy of the synergistic sustainable technique for the management of PS. ENVIRONMENTAL IMPLICATION: The effluent treatment plants (ETPs) of petroleum refining industries generate sludge which is a complex mixture of petroleum hydrocarbons, oil-water (O/W) emulsions and heavy metals. These petroleum hydrocarbon constituents can be linear/cyclic alkanes, polyaromatics, resins and asphaltenes, whose intricate composition is reportedly carcinogenic, cytogenic and mutagenic, classifying it as hazardous waste. Biological treatment of these sludge through anaerobic digestion leads to utilization of petroleum hydrocarbons with subsequent energy recovery. Co-digestion of these sludge with competent co-substrates leads to nutrient balance, diverse microbial proliferation and toxicant dilution. Microbially aided co-digestion further augments methane rendering a digestate with utmost pollutant degradation.
Collapse
Affiliation(s)
- Shinjini Paul Choudhury
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; School of Life and Basic Sciences, Jaipur National University, Jaipur 302017, Rajasthan, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Li P, Wei X, Wang M, Liu D, Liu J, Pei Z, Shi F, Wang S, Zuo X, Li D, Yu H, Zhang N, Yu Q, Luo Y. Simulation of anaerobic co-digestion of steam explosion pulping wastewater with cattle manure: Focusing on degradation and inhibition of furfural. BIORESOURCE TECHNOLOGY 2023; 380:129086. [PMID: 37100292 DOI: 10.1016/j.biortech.2023.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
In this study, an extended Anaerobic Digestion Model No.1, which considered the degradation and inhibition properties of furfural, was established and implemented to simulate the anaerobic co-digestion of steam explosion pulping wastewater and cattle manure in batch and semi-continuous modes. Batch and semi-continuous experimental data helped calibrate the new model and recalibrate the parameters related to furfural degradation, respectively. The cross-validation results showed the batch-stage calibration model accurately predicted the methanogenic behavior of all experimental treatments (R2 ≥ 0.959). Meanwhile, the recalibrated model satisfactorily matched the methane production results in the stable and high furfural loading stages in the semi-continuous experiment. In addition, recalibration results revealed the semi-continuous system tolerated furfural better than the batch system. These results provide insights into the anaerobic treatments and mathematical simulations of furfural-rich substrates.
Collapse
Affiliation(s)
- Pengfei Li
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China; Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Xinyu Wei
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Ming Wang
- Department of Agriculture Biological Environment and Energy Engineering, School of Engineering, Northeast Agriculture University, Harbin 150030, PR China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China
| | - Jie Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China; Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China.
| | - Zhanjiang Pei
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Fengmei Shi
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Su Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Xin Zuo
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Dan Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Hongjiu Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Nan Zhang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Qiuyue Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Yifei Luo
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| |
Collapse
|
4
|
Saravanan A, Senthil Kumar P, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, Karthika S. Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types, challenges, and future scope. CHEMOSPHERE 2023; 310:136856. [PMID: 36243094 DOI: 10.1016/j.chemosphere.2022.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Food waste have become a growing concern worldwide with raising population and economic growth. Wastewater discharged from food industries contains many valuable and toxic components that have a negative impact on the ecological system. Large amounts of wastewater are discharged from the food industry, which necessitates the creation of effective technologies. Wastewater from the food industry can be seen as a rich source of energy and a primary source for generating valuable products. Waste disposal and resource recovery are sustainably valued by anaerobic digestion of wastewater from the food sector. The characteristics, composition, and nature of wastewater produced from various food sectors are elaborated upon in this review. An overview of the anaerobic digestion process for wastewater treatment in the food industry is included. Enhancement strategies for the anaerobic digestion process have been discussed in detail. In addition, various types of reactors utilized for performing anaerobic digestion is illustrated. Though anaerobic digestion process possesses advantages, the challenges and future scope are examined for improving the outcome.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R Hariharan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P D Deepika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Krithika Anand
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karthika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
5
|
Rout PR, Goel M, Pandey DS, Briggs C, Sundramurthy VP, Halder N, Mohanty A, Mukherjee S, Varjani S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120667. [PMID: 36395914 DOI: 10.1016/j.envpol.2022.120667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) is identified as a promising thermochemical technique to recover biofuels and bioenergy from waste biomass containing low energy and high moisture content. The wastewater generated during the HTL process (HTWW) are rich in nutrients and organics. The release of the nutrients and organics enriched HTWW would not only contaminate the water bodies but also lead to the loss of valued bioenergy sources, especially in the present time of the energy crisis. Thus, biotechnological as well as physicochemical treatment of HTWW for simultaneous extraction of valuable resources along with reduction in polluting substances has gained significant attention in recent times. Therefore, the treatment of wastewater generated during the HTL of biomass for reduced environmental emission and possible bioenergy recovery is highlighted in this paper. Various technologies for treatment and valorisation of HTWW are reviewed, including anaerobic digestion, microbial fuel cells (MFC), microbial electrolysis cell (MEC), and supercritical water gasification (SCWG). This review paper illustrates that the characteristics of biomass play a pivotal role in the selection process of appropriate technology for the treatment of HTWW. Several HTWW treatment technologies are weighed in terms of their benefits and drawbacks and are thoroughly examined. The integration of these technologies is also discussed. Overall, this study suggests that integrating different methods, techno-economic analysis, and nutrient recovery approaches would be advantageous to researchers in finding way for maximising HTWW valorisation along with reduced environmental pollution.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Daya Shankar Pandey
- Center for Rural Development and Innovative Sustainable Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Caitlin Briggs
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | | | - Nirmalya Halder
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| |
Collapse
|
6
|
Mahato P, Goyette B, Rahaman MS, Rajagopal R. Processing High-Solid and High-Ammonia Rich Manures in a Two-Stage (Liquid-Solid) Low-Temperature Anaerobic Digestion Process: Start-Up and Operating Strategies. Bioengineering (Basel) 2020; 7:bioengineering7030080. [PMID: 32722477 PMCID: PMC7552754 DOI: 10.3390/bioengineering7030080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Globally, livestock and poultry production leads to total emissions of 7.1 Gigatonnes of CO2-equiv per year, representing 14.5% of all anthropogenic greenhouse gas emissions. Anaerobic digestion (AD) is one of the sustainable approaches to generate methane (CH4) from manure, but the risk of ammonia inhibition in high-solids AD can limit the process. Our objective was to develop a two-stage (liquid-solid) AD biotechnology, treating chicken (CM) + dairy cow (DM) manure mixtures at 20 °C using adapted liquid inoculum that could make livestock farming more sustainable. The effect of organic loading rates (OLR), cycle length, and the mode of operation (particularly liquid inoculum recirculation-percolation mode) was evaluated in a two-stage closed-loop system. After the inoculum adaptation phase, aforementioned two-stage batch-mode AD operation was conducted for the co-digestion of CM + DM (Total Solids (TS): 48-51% and Total Kjeldahl Nitrogen (TKN): 13.5 g/L) at an OLR of 3.7-4.7 gVS/L.d. Two cycles of different cycle lengths (112-d and 78-d for cycles 1 and 2, respectively) were operated with a CM:DM mix ratio of 1:1 (w/w) based on a fresh weight basis. Specific methane yield (SMY) of 0.35 ± 0.11 L CH4g/VSfed was obtained with a CH4 concentration of above 60% for both the cycles and Soluble Chemical Oxygen Demand (CODs) and volatile solid (VS) reductions up to 85% and 60%, respectively. For a comparison purpose, a similar batch-mode operation was conducted for mono-digestion of CM (TS: 65-73% and TKN: 21-23 g/L), which resulted in a SMY of 0.52 ± 0.13 L CH4g/VSfed. In terms of efficiency towards methane-rich biogas production and ammonia inhibitions, CM + DM co-digestion showed comparatively better quality methane and generated lower free ammonia than CM mono-digestion. Further study is underway to optimize the operating parameters for the co-digestion process and to overcome inhibitions and high energy demand, especially for cold countries.
Collapse
Affiliation(s)
- Prativa Mahato
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada; (P.M.); (B.G.)
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Bernard Goyette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada; (P.M.); (B.G.)
| | - Md. Saifur Rahaman
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada; (P.M.); (B.G.)
- Correspondence:
| |
Collapse
|
7
|
Sekoai PT, Engelbrecht N, du Preez SP, Bessarabov D. Thermophilic Biogas Upgrading via ex Situ Addition of H 2 and CO 2 Using Codigested Feedstocks of Cow Manure and the Organic Fraction of Solid Municipal Waste. ACS OMEGA 2020; 5:17367-17376. [PMID: 32715221 PMCID: PMC7377068 DOI: 10.1021/acsomega.0c01725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Bioconversion of renewable H2 and waste CO2 using methanogenic archaea is a promising technology for obtaining high-purity CH4, which can serve as an alternative for natural gas. This process is known as ex situ biogas upgrading. This work highlights the pathway toward the bioconversion of renewable H2 and CO2 into high-purity biomethane by exploiting highly accessible agro-municipal residues: cow manure (CM) and the organic fraction of solid municipal waste (OFSMW), which used to be called "waste materials". More specifically, an ex situ thermophilic (55 °C) biogas upgrading process was conducted by CM and OFSMW codigestion at different mass proportions: 100:0, 80:20, 70:30, 60:40, and 50:50. Maximum CH4 concentrations of 92-97 vol % and biogas volumetric production rates of 4954-6605 NmL/L.d were obtained from a batch reactor of 3 L working volume. Feedstock characterization, pH monitoring, and the carbon-to-nitrogen ratio were critical parameters to evaluate during biogas upgrading experiments. In this work, the usefulness of agro-municipal substrates is highlighted by producing high-purity biomethane-an energetic chemical to facilitate renewable energy conversion, which supports various end-use applications. This process therefore provides a solution to renewable energy storage challenges and future sustainable and green energy supply.
Collapse
|
8
|
Zaied BK, Nasrullah M, Siddique MNI, Zularisam AW, Singh L, Krishnan S. Co-digestion of palm oil mill effluent for enhanced biogas production in a solar assisted bioreactor: Supplementation with ammonium bicarbonate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136095. [PMID: 31862587 DOI: 10.1016/j.scitotenv.2019.136095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Lack of sufficient nitrogenous substrate and buffering potential have been acknowledged as impediments to the treatment of palm oil mill effluent through co-digestion processes. In this study, ammonium bicarbonate was used to provide the nitrogenous substrate and buffering potential. To regulate the impact of ammonium bicarbonate toxicity on the anaerobic co-digestion system, dosages from 0 to 40 mg/L were supplemented. The biogas yield was used to indicate the effects of NH4+ toxicity. In a solar-assisted bioreactor, solar radiation was first collected by a solar panel and converted into electricity, which was then used to heat a mixture of palm oil mill effluent and cattle manure to maintain the reactor in the mesophilic temperature range. This co-digestion operation was performed semi-continuously and was analyzed at a 50:50 mixing ratio of palm oil mill effluent and cattle manure. The results indicate that the additional dosing of ammonium bicarbonate can significantly enhance biogas production. Maximum cumulative biogas and methane productions of 2034.00 mL and 1430.51 mL, respectively, were obtained with the optimum addition of 10 mg/L ammonium bicarbonate; these values are 29.80% and 42.30% higher, respectively, than that obtained in the control co-digestion operation without addition of ammonium bicarbonate. Utilization of a mathematical equation (G = Gmk/t) to describe a kinetic analysis of the biogas yield also indicated that the optimum ammonium bicarbonate dose was 10 mg/L. The results of this study suggest that supplementation with ammonium bicarbonate doses of up to 40 mg/L can be used to provide nitrogenous substrates and buffering potential in anaerobic co-digestion processes. The determination of the optimal dose provides an alternative and efficient option for enhanced biogas production, which will have obvious economic advantages for feasible industrial applications.
Collapse
Affiliation(s)
- B K Zaied
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Pahang, Malaysia; Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang, Malaysia.
| | - Md Nurul Islam Siddique
- School of Ocean Engineering, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Lakhveer Singh
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Pahang, Malaysia; Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
| | - Santhana Krishnan
- Center of Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia
| |
Collapse
|
9
|
Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Prabakar D, Suvetha K S, Manimudi VT, Mathimani T, Kumar G, Rene ER, Pugazhendhi A. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:165-180. [PMID: 29679823 DOI: 10.1016/j.jenvman.2018.03.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed.
Collapse
Affiliation(s)
- Desika Prabakar
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600 025, Tamil Nadu, India
| | - Subha Suvetha K
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 303, India
| | - Varshini T Manimudi
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600 025, Tamil Nadu, India
| | - Thangavel Mathimani
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2601DA, Delft, The Netherlands
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Siddique MNI, Wahid ZBA. Effect of mixing proportion on the properties of seaweed modified sustainable concrete. AIP CONFERENCE PROCEEDINGS 2017. [DOI: 10.1063/1.5005465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Effect of food to microbe ratio variation on anaerobic co-digestion of petrochemical wastewater with manure. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Siddique MNI, Sakinah M, Zularisam A. Influence of flow rate variation on bio-energy generation during anaerobic co-digestion. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Ghasimi DSM, Tao Y, de Kreuk M, Zandvoort MH, van Lier JB. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:171. [PMID: 26500697 PMCID: PMC4618146 DOI: 10.1186/s13068-015-0355-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/09/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter (mesh size 350 micron). FSF is a heterogeneous substrate that mainly consists of fibres originating from toilet paper and thus contains a high cellulosic fraction (60-80 % of total solids content), regarded as an energy-rich material. RESULTS Results of the 656-day fed-batch operation clearly showed that thermophilic digestion was more stable, applying high organic loading rates (OLR) up to 22 kg COD/(m(3) day). In contrast, the mesophilic digester already failed applying an OLR of 5.5 kg COD/(m(3) day), indicated by a drop in pH and increase in volatile fatty acids (VFAs). The observed viscosity values of the mesophilic sludge were more than tenfold higher than the thermophilic sludge. 454-pyrosequencing of eight mesophilic and eight thermophilic biomass samples revealed that Bacteroides and aceticlastic methanogen Methanosaeta were the dominant genera in the mesophilic digester, whereas OP9 lineages, Clostridium and the hydrogenotrophic methanogen Methanothermobacter dominated the thermophilic one. CONCLUSIONS Our study suggests that applying thermophilic conditions for FSF digestion would result in a higher biogas production rate and/or a smaller required reactor volume, comparing to mesophilic conditions.
Collapse
Affiliation(s)
- Dara S. M. Ghasimi
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Yu Tao
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- />Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ the UK
| | - Merle de Kreuk
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Marcel H. Zandvoort
- />Waternet, Korte Ouderkerkerdijk 7, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Jules B. van Lier
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
15
|
Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 143:54-60. [PMID: 24837280 DOI: 10.1016/j.jenvman.2014.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 05/28/2023]
Abstract
Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.
Collapse
Affiliation(s)
- D Yu
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - J M Kurola
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - K Lähde
- HAMK University of Applied Sciences, P.O. Box 230, 13101 Hämeenlinna, Finland
| | - M Kymäläinen
- HAMK University of Applied Sciences, P.O. Box 230, 13101 Hämeenlinna, Finland
| | - A Sinkkonen
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - M Romantschuk
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland.
| |
Collapse
|