1
|
Duyar H, Büşra Çelebi E, Güney E, Hacıvelioğlu F. Water-soluble Polypyrrole-Polybis(4-oxy benzene sulfonic acid)phosphazene Composites and Investigation of Their Performance as Cathode Binder in Li-ion Batteries. CHEMSUSCHEM 2024; 17:e202301799. [PMID: 38285804 DOI: 10.1002/cssc.202301799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Current electric storage systems eagerly focus on high-power and energy-dense Lithium-ion batteries to cope with increasing energy storage demands. Since cathode materials are one of the bottlenecks of these batteries, there is much interest in layered lithium-rich manganese oxide-based (LLMO) cathodes which can develop this technology. However, Initial Coulombic Efficiency (ICE) loss, poor rate performance and cycling instability issues are still persistent as problems to be solved for these materials. Recent research shows that water-soluble binders are effective in improving the performance of LLMO materials. Herein, we describe the synthesis, characterisation, and application of a series of water-soluble composites as a binder for LLMO cathodes. The PPy is introduced as part of the binder to improve the electronic conductivity and two different oxidants and various PPy to PSAP ratios were used to optimise the final properties. The electrochemical performance and morphology of the cathodes before and after cycling were investigated and compared with the conventional PVDF binder. The LLMO-2c electrode showed excellent charge-discharge performance, especially at 5 C and 10 C rates, and high cycling stability at 0.2 C whilst maintaining a final capacity of 184 mAh/g after 200 cycles, which is equal to 89.3 % capacity retention.
Collapse
Affiliation(s)
- Halil Duyar
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli
| | - Elif Büşra Çelebi
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli
- School of Chemistry, University of Glasgow
| | - Emre Güney
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli
| | - Ferda Hacıvelioğlu
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli
- School of Chemistry, University of Glasgow
| |
Collapse
|
2
|
Jamali Alyani S, Dadvand Koohi A, Ashraf Talesh SS, Ebrahimian Pirbazari A. Investigation of TiO 2/PPy nanocomposite for photocatalytic applications; synthesis, characterization, and combination with various substrates: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42521-42546. [PMID: 38878243 DOI: 10.1007/s11356-024-33893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The use of photocatalysis technology, specifically visible light photocatalysis that relies on sustainable solar energy, is the most promising for the degradation of contaminants. The interaction of conducting polymer and titanium dioxide (TiO2) leads to the exchange that enhances the alteration of the semiconductor's surface and subsequently decreases the bandgap energy. Polypyrrole (PPy) and TiO2 nanocomposites have promising potential for photocatalytic degradation. Chemically and electrochemical polymerization are two predominant methods for adding inorganic nanoparticles to a conducting polymer host matrix. The most commonly utilized method for producing PPy/TiO2 nanocomposites is the in-situ chemical oxidative polymerization technique. Immobilizing PPy/TiO2 on substrates causes more charge carriers (electron/hole pairs) to be produced on the surface of TiO2 and enhances the rate of photocatalytic degradation compared to pure TiO2. The increased surface charge affects how electron/hole pairs are formed when visible light is used. This study provides a comprehensive investigation into the synthesis, characterization, application, efficiency, and mechanism of PPy/TiO2 nanocomposites in the photocatalytic degradation process of various pollutants. Furthermore, the effect of stabilizing the TiO2/PPy nanocomposite on various substrates will be investigated. In conclusion, the review outlines the ongoing challenges in utilizing these photocatalysts and highlights the essential concerns that require attention in future research. Its objective is to help researchers better understand photocatalysts and encourage their use in wastewater treatment.
Collapse
Affiliation(s)
- Sedigheh Jamali Alyani
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran
| | - Ahmad Dadvand Koohi
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran.
| | - S Siamak Ashraf Talesh
- Chemical Engineering Department, Engineering Faculty, University of Guilan, Rasht, 41996-13776, Iran
| | - Azadeh Ebrahimian Pirbazari
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| |
Collapse
|
3
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
5
|
Sumdani MG, Islam MR, Yahaya ANA, Safie SI. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Gulam Sumdani
- Malaysian Institute of Chemical and Bio‐engineering Technology, Universiti Kuala Lumpur Kuala Lumpur Malaysia
| | - Muhammad Remanul Islam
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| | - Ahmad Naim A. Yahaya
- Institute of Postgraduate Studies, Universiti Kuala Lumpur Kuala Lumpur Wilayah Persekutuan Malaysia
| | - Sairul Izwan Safie
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| |
Collapse
|
6
|
Mohd Nurazzi N, Asyraf M, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee CL, Aisyah HA, Norrrahim MNF, Ilyas RA, Harussani MM, Ishak MR, Sapuan SM. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers (Basel) 2021; 13:1047. [PMID: 33810584 PMCID: PMC8037012 DOI: 10.3390/polym13071047] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
Collapse
Affiliation(s)
- Norizan Mohd Nurazzi
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - M.R.M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Abdan Khalina
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Fatimah Athiyah Sabaruddin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Siti Hasnah Kamarudin
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor 40450, Malaysia; (S.H.K.); (S.A.)
| | - So’bah Ahmad
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor 40450, Malaysia; (S.H.K.); (S.A.)
| | - Annie Maria Mahat
- Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia;
| | - Chuan Li Lee
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - H. A. Aisyah
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana, Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor 81310, Malaysia;
| | - M. M. Harussani
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| |
Collapse
|
7
|
Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ai Ling Pang
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Agus Arsad
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohsen Ahmadipour
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Penang Malaysia
| |
Collapse
|
8
|
Kaya İ, Boz ME, Kolcu F. 3-Aminopropyltriethoxysilane-mediated (phenoxy-imine) polymers: synthesis and characterization. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Min JH, Patel M, Koh WG. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2018; 10:E1078. [PMID: 30961003 PMCID: PMC6404001 DOI: 10.3390/polym10101078] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
In the field of tissue engineering, conductive hydrogels have been the most effective biomaterials to mimic the biological and electrical properties of tissues in the human body. The main advantages of conductive hydrogels include not only their physical properties but also their adequate electrical properties, which provide electrical signals to cells efficiently. However, when introducing a conductive material into a non-conductive hydrogel, a conflicting relationship between the electrical and mechanical properties may develop. This review examines the strengths and weaknesses of the generation of conductive hydrogels using various conductive materials such as metal nanoparticles, carbons, and conductive polymers. The fabrication method of blending, coating, and in situ polymerization is also added. Furthermore, the applications of conductive hydrogel in cardiac tissue engineering, nerve tissue engineering, and bone tissue engineering and skin regeneration are discussed in detail.
Collapse
Affiliation(s)
- Ji Hong Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
- Active Polymer Center for Pattern Integration (APCPI), Yonsei-ro 50, Seoul 03722, Korea.
| | - Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
10
|
Rawal I, Kumar L, Tripathi RK, Panwar OS. Surface Structure-Dependent Low Turn-On Electron Field Emission from Polypyrrole/Tin Oxide Hybrid Cathodes. ACS OMEGA 2017; 2:7515-7524. [PMID: 31457313 PMCID: PMC6645290 DOI: 10.1021/acsomega.7b01274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/20/2017] [Indexed: 06/10/2023]
Abstract
We present a new surface structure-dependent cold cathode material capable of sustaining high electron emission current suitable for next-generation low turn-on field-emission devices. The low turn-on electric field for electron emission in the cathode materials is critical, which facilitates the low-power room-temperature operation, a key factor required by the industrial sector. We demonstrate the facile synthesis of polypyrrole (PPy)/tin oxide (SnO2)-based core-shell hybrid cold cathode materials for large area applications. The technique used here is based on a simple and economical method of surfactant-mediated polymerization. The coupled investigation of X-ray diffraction along with electron microscopy reveals the formation of rutile phase SnO2 nanoparticles of size ∼15 nm. These SnO2 nanoparticles act as nucleation sites for the growth of PPy nanofibers, resulting in encapsulated SnO2 nanoparticles in the PPy amorphous matrix. The coupling of spherical-shaped core-shell structures of PPy/SnO2 resulted into the particle train-like nanostructured form of the hybrid material. These core-shell structures formed the local p-n junction between the n-type SnO2 (core) and p-type PPy (shell). The long chains of these p-n junctions in nanofibers result in the modification of the electronic band structure of PPy, leading to a reduction in the work function of the electrons. The significant surface structural modification in PPy/SnO2 causes a prominent reduction in the turn-on electric field for electron emission in PPy/SnO2 nanocomposite (∼1.5 V/μm) as compared to the pure PPy (∼3.3 V/μm) without significant loss in current density (∼1 mA/cm2). The mechanism of improved field-emission behavior and advantages of using such hybrid nanomaterials as compared to other composite nanomaterials have also been discussed in detail.
Collapse
Affiliation(s)
- Ishpal Rawal
- Department
of Physics, Kirori Mal College, and Department of Physics, Hindu College, University of Delhi, Delhi 110007, India
| | - Lalit Kumar
- Department
of Physics, Kirori Mal College, and Department of Physics, Hindu College, University of Delhi, Delhi 110007, India
| | - Ravi Kant Tripathi
- Department
of Applied Physics, School of Physical Sciences, B. B. A. University, Lucknow 226025, Uttar Pradesh, India
| | - Omvir Singh Panwar
- Department
of Physics, School of Engineering and Technology, BML Munjal University, NH-8, 67 KM Stone, Sidhrawali, Gurgaon 122413, India
| |
Collapse
|
11
|
Patton AJ, Poole-Warren LA, Green RA. Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials. Macromol Biosci 2016; 16:1103-21. [DOI: 10.1002/mabi.201600057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/31/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Rylie A. Green
- Graduate School of Biomedical Engineering; University of New South Wales
| |
Collapse
|
12
|
|
13
|
Park SH, Bae J. Tailoring environment friendly carbon nanostructures by surfactant mediated interfacial engineering. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|