1
|
Myrzakhmetov B, Akhmetova A, Bissenbay A, Karibayev M, Pan X, Wang Y, Bakenov Z, Mentbayeva A. Review: chitosan-based biopolymers for anion-exchange membrane fuel cell application. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230843. [PMID: 38026010 PMCID: PMC10645128 DOI: 10.1098/rsos.230843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs. Furthermore, the study investigates the stability of cationic head groups grafted to CS through simulations. Understanding the chemical properties of CS, including the behaviour of grafted head groups, provides valuable insights into the membrane's overall stability and performance. Additionally, the study mentions the potential of modern cellulose membranes for alkaline environments as promising biopolymers. While the primary focus is on CS-based AEMs, the inclusion of cellulose membranes underscores the broader exploration of biopolymer materials for fuel cell applications.
Collapse
Affiliation(s)
- Bauyrzhan Myrzakhmetov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aktilek Akhmetova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aiman Bissenbay
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Mirat Karibayev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Xuemiao Pan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Yanwei Wang
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Zhumabay Bakenov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| |
Collapse
|
2
|
Zhang L, Ma Z, Sun H, Zhang R, Zhao Z, Wang J, Zhang Z, Liu Z, Li J, Du X, Hao X. A novel CNTs/QCS/BiOBr composite membrane with electron-ion transfer channel for Br - recovery in ESIX process. J Colloid Interface Sci 2023; 646:784-793. [PMID: 37229996 DOI: 10.1016/j.jcis.2023.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Based on the superior selectivity of bismuth oxybromide (BiOBr) for Br-, the excellent electrical conductivity of carbon nanotubes (CNTs), and the ion exchange capacity of quaternized chitosan (QCS), a three-dimensional network composite membrane electrode CNTs/QCS/BiOBr was constructed, in which BiOBr served as the storage space for Br-, CNTs provided the electron transfer pathway, and QCS cross-linked by glutaraldehyde (GA) was used for ion transfer. The CNTs/QCS/BiOBr composite membrane exhibits superior conductivity after the introduction of the polymer electrolyte, which is seven orders of magnitude higher than that of conventional ion-exchange membranes. Furthermore, the addition of the electroactive material BiOBr improved the adsorption capacity for Br- by a factor of 2.7 in electrochemically switched ion exchange (ESIX) system. Meanwhile, the CNTs/QCS/BiOBr composite membrane displays excellent Br- selectivity in mixed solutions of Br-, Cl-, SO42- and NO3-. Therein, the covalent bond cross-linking within the CNTs/QCS/BiOBr composite membrane endows it great electrochemical stability. The synergistic adsorption mechanism of the CNTs/QCS/BiOBr composite membrane provides a new direction for achieving more efficient ion separation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhen Ma
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Haidong Sun
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Rongzi Zhang
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Zilong Zhao
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Jie Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhonglin Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhong Liu
- Qinghai Institute of Salt Lakes Chinese Academy of Sciences, Xining 810008, China
| | - Jun Li
- Qinghai Institute of Salt Lakes Chinese Academy of Sciences, Xining 810008, China
| | - Xiao Du
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaogang Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
3
|
Rathod NH, Upadhyay P, Pal S, Kulshrestha V. Highly Cross-Linked butene grafted poly (Vinyl Alcohol)–co-Vinyl pyridine based anion exchange membrane for improved acid recovery and desalination efficiency. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Khan MI, Shanableh A, Osman SM, Lashari MH, Manzoor S, Rehman AU, Luque R. Fabrication of trimethylphosphine-functionalized anion exchange membranes for desalination application via electrodialysis process. CHEMOSPHERE 2022; 308:136330. [PMID: 36087733 DOI: 10.1016/j.chemosphere.2022.136330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The design of conductive, improved durable and selective anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process is critical for a more sustainable future. This work reports the design of a series of homogeneous trimethylphosphine (TMP)-functionalized anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process. Physico-chemical characterization and electrochemical performance of the trimethylphosphine-functionalized anion exchange membranes was conducted and the activity found to be tuned by varying the quantity of trimethylphosphine into the membrane architecture. For anion exchange membranes M1 to M4, the ion exchange capacity (IEC) was increased from 1.35 to 2.16 mmol/g, water uptake (WR) from 4.30 to 17.72%, linear expansion ratio (LER) from 3.70 to 12.50% with enhancing the quantity of trimethylphosphine into the polymer architecture. The ionic resistance decreased from 15.14 to 2.61 Ω cm2 with increasing quantities of trimethylphosphine whereas transport number increased from 0.98 to 0.99. The performance of synthesized trimethylphosphine-functionalized anion exchange membranes in desalination of NaCl was evaluated via electrodialysis process (flux of 3.42 mol/m2. h and current efficiency of 64.30%). Results showed that the prepared trimethylphosphine-functionalized membrane (optimum M4) possess improved desalination performance as compared to commercial membrane Neosepta AMX under identical experimental conditions.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Aziz Ur Rehman
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C 3), Campus de Rabanales, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation
| |
Collapse
|
5
|
Sgreccia E, Narducci R, Knauth P, Di Vona ML. Silica Containing Composite Anion Exchange Membranes by Sol-Gel Synthesis: A Short Review. Polymers (Basel) 2021; 13:polym13111874. [PMID: 34200025 PMCID: PMC8200225 DOI: 10.3390/polym13111874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
This short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol–gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The most stringent requirements are high permselectivity and water flux for DD membranes, while high ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future topics of investigation on composite AEM containing an organo-silica network are also discussed.
Collapse
Affiliation(s)
- Emanuela Sgreccia
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
- Correspondence:
| | - Riccardo Narducci
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
| | - Philippe Knauth
- CNRS, Madirel (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Aix Marseille University, F-13013 Marseille, France;
| | - Maria Luisa Di Vona
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
| |
Collapse
|
6
|
Aghapour Aktij S, Zirehpour A, Mollahosseini A, Taherzadeh MJ, Tiraferri A, Rahimpour A. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Hao L, Wang C, Chen Q, Yu X, Liao J, Shen J, Gao C. A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ye N, Zhang D, Yang Y, Wan R, Chen S, Zhan Q, He R. 3-Glycidoxy-propylthrimethoxysilane improved anion exchange membranes based on quaternized poly(2,6-dimethyl-1,4-phenyleneoxide). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Dhanapal D, Xiao M, Wang S, Meng Y. A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. NANOMATERIALS 2019; 9:nano9050668. [PMID: 31035423 PMCID: PMC6566683 DOI: 10.3390/nano9050668] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
This paper focuses on a literature analysis and review of sulfonated polymer (s-Poly) composites, sulfonated organic, inorganic, and organic-inorganic hybrid membranes for polymer electrolyte membrane fuel cell (PEM) systems, particularly for methanol fuel cell applications. In this review, we focused mainly on the detailed analysis of the distinct segment of s-Poly composites/organic-inorganic hybrid membranes, the relationship between composite/organic- inorganic materials, structure, and performance. The ion exchange membrane, their size distribution and interfacial adhesion between the s-Poly composites, nanofillers, and functionalized nanofillers are also discussed. The paper emphasizes the enhancement of the s-Poly composites/organic-inorganic hybrid membrane properties such as low electronic conductivity, high proton conductivity, high mechanical properties, thermal stability, and water uptake are evaluated and compared with commercially available Nafion® membrane.
Collapse
Affiliation(s)
- Duraibabu Dhanapal
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Ye N, Xu Y, Zhang D, Yang Y, Yang J, He R. High alkaline resistance of benzyl-triethylammonium functionalized anion exchange membranes with different pendants. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wang Y, Li W, Yan H, Xu T. Removal of heat stable salts (HSS) from spent alkanolamine wastewater using electrodialysis. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
|
14
|
Moghadasi M, Mortaheb HR. Incorporating functionalized silica nanoparticles in polyethersulfone-based anion exchange nanocomposite membranes. J Appl Polym Sci 2016. [DOI: 10.1002/app.44596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdieh Moghadasi
- Chemistry and Chemical Engineering Research Center of Iran; P.O. Box 14335-186 Tehran
| | - Hamid Reza Mortaheb
- Chemistry and Chemical Engineering Research Center of Iran; P.O. Box 14335-186 Tehran
| |
Collapse
|
15
|
Zhang W, Wang P, Ma J, Wang Z, Liu H. Investigations on electrochemical properties of membrane systems in ion-exchange membrane transport processes by electrochemical impedance spectroscopy and direct current measurements. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Basumatary AK, Kumar RV, Ghoshal AK, Pugazhenthi G. Removal of FeCl3 from aqueous solution by ultrafiltration using ordered mesoporous MCM-48 ceramic composite membrane. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1187168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ashim Kumar Basumatary
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - R. Vinoth Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Aloke Kumar Ghoshal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - G. Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
18
|
Khan MI, Luque R, Akhtar S, Shaheen A, Mehmood A, Idress S, Buzdar SA, Ur Rehman A. Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination. MATERIALS 2016; 9:ma9050365. [PMID: 28773487 PMCID: PMC5503003 DOI: 10.3390/ma9050365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs) from brominated poly(2,6-dimethyl-1,6-phenylene oxide) (BPPO) and methyl(diphenyl)phosphine (MDPP) for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC) 1.09–1.52 mmol/g, water uptake (WR) 17.14%–21.77%, linear expansion ratio (LER) 7.96%–11.86%, tensile strength (TS) 16.66–23.97 MPa and elongation at break (Eb) 485.57%–647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China.
| | - Rafael Luque
- Departamento de Universidad de Córdoba, Edificio Marie Curie, Ctra Nnal IV-A, Km396, Córdoba E14014, Spain.
| | - Shahbaz Akhtar
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Aqeela Shaheen
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ashfaq Mehmood
- Department of Chemistry, Bahaudin Zakariya University Multan, Multan 60800, Pakistan.
| | - Sidra Idress
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Saeed Ahmad Buzdar
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Aziz Ur Rehman
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
19
|
Mondal AN, Cheng C, Yao Z, Pan J, Hossain MM, Khan MI, Yang Z, Wu L, Xu T. Novel quaternized aromatic amine based hybrid PVA membranes for acid recovery. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kim DJ, Jeong MK, Nam SY. Research Trends in Ion Exchange Membrane Processes and Practical Applications. APPLIED CHEMISTRY FOR ENGINEERING 2015. [DOI: 10.14478/ace.2015.1008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|