1
|
Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms. Biosens Bioelectron 2021; 181:113120. [PMID: 33714858 DOI: 10.1016/j.bios.2021.113120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Polydiacetylene (PDA) is a versatile polymer that has been studied in numerous fields because of its unique optical properties derived from alternating multiple bonds in the polymer backbone. The conjugated structure in the polymer backbone enables PDA to possess the ability of blue-red colorimetric transition when π-π interactions in the PDA backbone chain are disturbed by the external environment. The chromatic property of PDA disturbed by external stimuli can also emit fluorescence in the red region. Owing to the unique characteristics of PDA, it has been widely studied in facile and label-free sensing applications based on colorimetric or fluorescence signals for several decades. Among the various PDA structures, membrane structures assembled by amphiphilic molecules are widely used as a versatile platform because facile modification of the synthetic membrane provides extensive applications, such as receptor-ligand interactions, resulting in potent biosensors. To use PDA as a sensory material, several methods have been studied to endow the specificity to PDA molecules and to amplify the signal from PDA supramolecules. This is because selective and sensitive detection of target materials is required at an appropriate level corresponding to each material for applicable sensor applications. This review focuses on factors that affect the sensitivity of PDA composites and several strategies to enhance the sensitivity of the PDA sensor to various structures. Owing to these strategies, the PDA sensor system has achieved a higher level of sensitivity and selectivity, enabling it to detect multiple target materials for a full field of application.
Collapse
|
2
|
Huang Q, Wu W, Ai K, Liu J. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. Front Chem 2020; 8:565782. [PMID: 33282824 PMCID: PMC7691385 DOI: 10.3389/fchem.2020.565782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Polydiacetylenes are prepared from amphiphilic diacetylenes first through self-assembly and then polymerization. Different from common supramolecular assemblies, polydiacetylenes have stable structure and very special optical properties such as absorption, fluorescence, and Raman. The hydrophilic head of PDAs is easy to be chemically modified with functional groups for detection and imaging applications. PDAs will undergo a specific color change from blue to red, fluorescence enhancement and Raman spectrum changes in the presence of receptor ligands. These properties allow PDA-based sensors to have high sensitivity and specificity during analysis. Therefore, the PDAs have been widely used for detection of viruses, bacteria, proteins, antibiotics, hormones, sialic acid, metal ions and as probes for bioimaging in recent years. In this review, the preparation, polymerization, and detection mechanisms of PDAs are discussed, and some representative research advances in the field of bio-detection and bioimaging are highlighted.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Cha MG, Kim HM, Kang YL, Lee M, Kang H, Kim J, Pham XH, Kim TH, Hahm E, Lee YS, Jeong DH, Jun BH. Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes. PLoS One 2017; 12:e0178651. [PMID: 28570633 PMCID: PMC5453564 DOI: 10.1371/journal.pone.0178651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs) structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs) for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP) from the mixture with limits of detection (LOD) of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA) calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety.
Collapse
Affiliation(s)
- Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yoo-Lee Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Minwoo Lee
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Homan Kang
- Interdisciplinary Program in Nano-Science and Technology. Seoul National University, Seoul, Republic of Korea
| | - Jaehi Kim
- School of Chemical and Biological Engineering, Seoul National University Seoul, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Tae Han Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yoon-Sik Lee
- Interdisciplinary Program in Nano-Science and Technology. Seoul National University, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University Seoul, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Effect of electrodeposition cycles on the performance of gold nanostructures as SERS-active substrates. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine. Sci Rep 2016; 6:31115. [PMID: 27502314 PMCID: PMC4977466 DOI: 10.1038/srep31115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.
Collapse
|
6
|
Oh S, Uh K, Jeon S, Kim JM. A Free-Standing Self-Assembled Tubular Conjugated Polymer Sensor. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Seungwhan Oh
- Department
of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| | - Kyungchan Uh
- Department
of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| | - Seongho Jeon
- Department
of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| | - Jong-Man Kim
- Department
of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
7
|
|
8
|
Kang T, Jeong S, Kang H, Kim J, Kim HM, Kyeong S, Lee SH, Jeong DH, Jun BH, Lee YS. Fabrication of Ag nanoaggregates/SiO2 yolk–shell nanoprobes for surface-enhanced Raman scattering. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lee JY, Park YH, Roy AK, Park B, Jang JH, Park SY, In I. Visualization of Noncovalent Interaction between Aliphatic Dendrimers and Chemically Reduced Graphene Oxide. CHEM LETT 2015. [DOI: 10.1246/cl.141158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jung Yup Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology
| | - Young Ho Park
- Department of Polymer Science and Engineering, Korea National University of Transportation
| | - Arup Kumer Roy
- Department of Polymer Science and Engineering, Korea National University of Transportation
| | - Byoungnam Park
- Department of Materials Science and Engineering, Hongik University
| | - Ji-Hyun Jang
- Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation
- Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation
| | - Insik In
- Department of Polymer Science and Engineering, Korea National University of Transportation
- Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation
| |
Collapse
|