1
|
Gedda G, Park YJ, Pang MG. Recent development of nanotechnology-based approaches for gynecologic cancer therapy. Obstet Gynecol Sci 2025; 68:18-29. [PMID: 39591955 PMCID: PMC11788694 DOI: 10.5468/ogs.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Gynecological cancer is a life-threatening malignancy among women. Traditional therapies, including chemotherapy, often face challenges in terms of chemotherapeutic drug solubility and resistance, specificity, tumor site targeting, and toxicity to healthy tissues, leading to shortened efficacy and unfavorable patient outcomes and survival rates in patients with gynecologic malignancies. Recently, nanotechnology-based therapeutic methods such as targeted drug delivery and phototherapies have emerged as an appropriate alternative to overcome issues associated with traditional therapeutic methods. Specifically, nanomaterials and nanomaterial-based methods enhance the delivery of therapeutic/targeting agents to tumor sites and cellular uptakes and improve the tumor-suppressing effect. This review aims to provide an overview and future perspective on the potential impact of nanotechnology-based therapeutic methods for effective therapies for gynecologic cancer.
Collapse
Affiliation(s)
- Gangaraju Gedda
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
- Central Research Laboratory, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| |
Collapse
|
2
|
Kajani AA, Pouresmaeili A, Mehrgardi MA, Javanmard SH. Heteroatom-doped magneto-fluorescent carbon dots, a potent agent for multimodal imaging. Sci Rep 2024; 14:29111. [PMID: 39582076 PMCID: PMC11586438 DOI: 10.1038/s41598-024-80531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
A simple, one-pot and green method is reported for hydrothermal synthesis of highly fluorescent and magnetic carbon dots (CDs) by using D-glucose, as the carbon source. CDs were fully characterized by the UV-Vis and fluorescence spectroscopy, DLS, FTIR, TEM, EDS, XRD, and VSM. The nitrogen doping of different diamines significantly improved the fluorescence quantum yield (QY) of CDs with the maximum effect obtained by using m-phenylenediamine (mPDA). Temperature and reaction time also affected the QY of CDs with the best results obtained at 150 °C for 3 h. The heteroatom doping by innovative use of different metal sulfates including FeSO4, MnSO4, CuSO4, MgSO4, and ZnSO4, further improved the optical properties of CDs. Interestingly, the magnetic and multicolor CDs with high colloidal stability and QYs of 17.7, 16.5, and 53.9% at 460, 490, and 515 nm, respectively, were synthesized by using 0.1 M of glucose, mPDA and MnSO4. The resulted Mn-, S-, N-doped CDs represented rapid uptake and high-quality fluorescence imaging of the human fibroblast and umbilical vein endothelial cells in vitro, without significant toxicity. The CDs also displayed high r1 relaxivity of 32.3 mM- 1 s- 1 and were used for high-contrast MR and fluorescence imaging of mouse tumor models, in vivo.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ali Pouresmaeili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Liu Y, Sun K, Shi N, Li R, Zhang J, Zhao J, Geng L, Lei Y. Dual Functions of Nitrogen and Phosphorus Co-Doped Carbon Dots for Drug-Targeted Delivery aAnd Two-Photon Cell Imaging. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Uthaman S, Pillarisetti S, Huh KM, Cho CS, Park IK. Drug-dye-apoptosis inducing micelles for enhancing host immunity against advanced metastatic breast cancer by the combination of low dose chemotherapy and photothermal therapy. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon Dots as Nanotherapeutics for Biomedical Application. Curr Pharm Des 2020; 26:2207-2221. [PMID: 32238132 DOI: 10.2174/1381612826666200402102308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Carbon nanodots are zero-dimensional spherical allotropes of carbon and are less than 10nm in size (ranging from 2-8nm). Based on their biocompatibility, remarkable water solubility, eco- friendliness, conductivity, desirable optical properties and low toxicity, carbon dots have revolutionized the biomedical field. In addition, they have intrinsic photo-luminesce to facilitate bio-imaging, bio-sensing and theranostics. Carbon dots are also ideal for targeted drug delivery. Through functionalization of their surfaces for attachment of receptor-specific ligands, they ultimately result in improved drug efficacy and a decrease in side-effects. This feature may be ideal for effective chemo-, gene- and antibiotic-therapy. Carbon dots also comply with green chemistry principles with regard to their safe, rapid and eco-friendly synthesis. Carbon dots thus, have significantly enhanced drug delivery and exhibit much promise for future biomedical applications. The purpose of this review is to elucidate the various applications of carbon dots in biomedical fields. In doing so, this review highlights the synthesis, surface functionalization and applicability of biodegradable polymers for the synthesis of carbon dots. It further highlights a myriad of biodegradable, biocompatible and cost-effective polymers that can be utilized for the fabrication of carbon dots. The limitations of these polymers are illustrated as well. Additionally, this review discusses the application of carbon dots in theranostics, chemo-sensing and targeted drug delivery systems. This review also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life.
Collapse
Affiliation(s)
- Eemaan N Cohen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
8
|
Li G, Pei M, Liu P. pH/Reduction dual-responsive comet-shaped PEGylated CQD-DOX conjugate prodrug: Synthesis and self-assembly as tumor nanotheranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110653. [PMID: 32204081 DOI: 10.1016/j.msec.2020.110653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/28/2022]
Abstract
Carbon quantum dots (CQDs) show promising potential for tumor imaging owing to their unique superior fluorescent properties. However, the small particle size limits their practical application. Here, pH/reduction dual-responsive comet-shaped PEGylated CQD-DOX conjugate prodrug, DOX-Hy-CQD-SS-PEG with DOX content of 28.5%, was designed with the hydrophobic acid-labile DOX conjugated CQDs as comet nucleus and the few hydrophilic bioreducible detachable PEG brushes as comet tails. The comet-shaped DOX-Hy-CQD-SS-PEG prodrug could self-assemble into unique micelles with mean diameter of 127 nm. The DOX-Hy-CQD-SS-PEG micelles possessed excellent pH/reduction dual-responsive drug release with low drug leakage of 9% in 150 h. Furthermore, the fluorescent CQDs was recovered after DOX release and de-PEGylation, demonstrating their potential application for real-time response of therapy.
Collapse
Affiliation(s)
- Guoping Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Simsek S, Alas MO, Ozbek B, Genc R. Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. J Fluoresc 2019; 29:853-864. [PMID: 31214927 DOI: 10.1007/s10895-019-02390-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
In this original research, the synthesis of carbon nanodots (CDs) from two different solvent extracts of Nerium oleander by the thermal method was investigated under various physical conditions such as pH, reaction temperature, ionic strength, and surface passivation agent (polyethylene glycol, PEG) presence in the reaction media. The effects of extract types and physical conditions on CDs formation were characterized by UV-Visible spectrophotometry, fluorescence spectrophotometry, Fourier transform infrared spectroscopy and dynamic light scattering analysis. Fluorescent CDs were obtained from PEG included reaction media. Additionally, the enhanced fluorescence intensity correlated with ascending reaction temperature was reported. The hydrodynamic particle size of CDs in aqueous solution was determined between ~1 and 235 nm with negative surface potential in the range of -6 mV and -28 mV. Moreover, CDs synthesized from aqueous extract mostly resulted in smaller size than that of ethanol extract based ones. The impact of surface passivation with PEG on the fluorescence feature of CDs was verified. For the relevant extracts of Oleander, CDs synthesized from PEG included formulations at pH 5 and NaCl free reaction media found as better alternatives than CDs synthesized under other conditions taking account their effect on fluorescence feature, hydrodynamic size and etc. Graphical Abstract.
Collapse
Affiliation(s)
- Sinem Simsek
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey
| | - Melis Ozge Alas
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Yenisehir, 33343, Mersin, Turkey
| | - Belma Ozbek
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey.
| | - Rukan Genc
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Yenisehir, 33343, Mersin, Turkey.
| |
Collapse
|
10
|
Zhou B, Guo Z, Lin Z, Zhang L, Jiang BP, Shen XC. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00201d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The current developments of NIR-responsive CDs and their applications in bioimaging and phototherapy are highlighted in this review.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Zhengxi Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Zhaoxing Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Lizheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Bang-Ping Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
11
|
Abbasi Kajani A, Bordbar AK, Mehrgardi MA, Zarkesh-Esfahani SH, Motaghi H, Kardi M, Khosropour AR, Ozdemir J, Benamara M, Beyzavi H. Green and Facile Synthesis of Highly Photoluminescent Multicolor Carbon Nanocrystals for Cancer Therapy and Imaging. ACS APPLIED BIO MATERIALS 2018; 1:1458-1467. [DOI: 10.1021/acsabm.8b00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | | | - Hasan Motaghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mohammad Kardi
- Department of Biology, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mourad Benamara
- Institute for Nano Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nano Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
12
|
Core-shell structure of Fe3O4@MTX-LDH/Au NPs for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:422-428. [DOI: 10.1016/j.msec.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/15/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
|
13
|
The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line RAW 264.7 and Human Whole Blood Cell Cultures. NANOMATERIALS 2018; 8:nano8060388. [PMID: 29857529 PMCID: PMC6027327 DOI: 10.3390/nano8060388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
Carbon dots (CDs) are engineered nanoparticles that are used in a number of bioapplications such as bioimaging, drug delivery and theranostics. The effects of CDs on the immune system have not been evaluated. The effects of CDs on the immune system were assessed by using RAW 264.7 cells and whole blood cell cultures. RAW cells were exposed to CD concentrations under basal conditions. Whole blood cell cultures were exposed to CD concentrations under basal conditions or in the presence of the mitogens, lipopolysaccharide (LPS) or phytohaemmagglutinin (PHA). After exposure, a number of parameters were assessed, such as cell viability, biomarkers of inflammation, cytokine biomarkers of the acquired immune system and a proteome profile analysis. CDs were cytotoxic to RAW and whole blood cell cultures at 62.5, 250 and 500 μg/mL, respectively. Biomarkers associated with inflammation were induced by CD concentrations ≥250 and 500 μg/mL under basal conditions for both RAW and whole blood cell cultures, respectively. The humoral immune cytokine interleukin (IL)-10 was increased at 500 μg/mL CD under both basal and PHA activated whole blood cell culture conditions. Proteome analysis supported the inflammatory data as upregulated proteins identified are associated with inflammation. The upregulated proteins provide potential biomarkers of risk that can be assessed upon CD exposure.
Collapse
|
14
|
Pandey S, Sharma KH, Sharma AK, Nerthigan Y, Hang D, Wu H. Comparative Photothermal Performance among Various Sub‐Stoichiometric 2D Oxygen‐Deficient Molybdenum Oxide Nanoflakes and In Vivo Toxicity. Chemistry 2018; 24:7417-7427. [DOI: 10.1002/chem.201705734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sunil Pandey
- Department of ChemistryNational Sun Yat-Sen University, Kaohsiung 70, Lien-Hai Road Kaohsiung 80424 Taiwan
| | - Krishna Hari Sharma
- Department of Materials and Optoelectronic ScienceCollege of EngineeringNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Amit Kumar Sharma
- Department of Materials and Optoelectronic ScienceCollege of EngineeringNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Yowan Nerthigan
- Department of Materials and Optoelectronic ScienceCollege of EngineeringNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Da‐Ren Hang
- Department of Materials and Optoelectronic ScienceCollege of EngineeringNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Hui‐Fen Wu
- Department of ChemistryNational Sun Yat-Sen University, Kaohsiung 70, Lien-Hai Road Kaohsiung 80424 Taiwan
- School of PharmacyCollege of PharmacyKaohsiung Medical University Kaohsiung 800 Taiwan
- National Sun Yat-Sen University and Academia Sinica Kaohsiung 80424 Taiwan
- Institute of Medical Science and TechnologyNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
15
|
Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. Int J Biol Macromol 2018; 110:294-307. [DOI: 10.1016/j.ijbiomac.2017.10.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
|
16
|
Gedda G, Chen GR, Yao YY, Girma WM, Li JD, Yen CL, Ling YC, Chang JY. Aqueous synthesis of dual-targeting Gd-doped CuInS2/ZnS quantum dots for cancer-specific bi-modal imaging. NEW J CHEM 2017. [DOI: 10.1039/c7nj02252b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CIGS/ZnS@FA|APBA q-dots were synthesized in an aqueous phase; these quantum dots exhibited great potential as dual-modal nanoprobes for optical/MR imaging.
Collapse
Affiliation(s)
- Gangaraju Gedda
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei
- Republic of China
| | - Guan-Rong Chen
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei
- Republic of China
| | - Yueh-Yun Yao
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei
- Republic of China
| | - Jyun-Dong Li
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei
- Republic of China
| | - Chia-Liang Yen
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Yong-Chien Ling
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei
- Republic of China
| |
Collapse
|