Confinement effects facilitate low-concentration carbon dioxide capture with zeolites.
Proc Natl Acad Sci U S A 2022;
119:e2211544119. [PMID:
36122236 PMCID:
PMC9522334 DOI:
10.1073/pnas.2211544119]
[Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Direct air capture (DAC) of CO2 from the atmosphere is being pursued to aid in mitigating global CO2 amounts and possibly reaching net negative emissions by 2050. We report that a type of commercialized zeolite, mordenite (MOR)-type zeolite, is a promising adsorbent for DAC because of its high CO2 capacity, high selectivity, fast kinetics, low isosteric heat of adsorption, and high stability under simulated DAC conditions. We demonstrate that the primary site for CO2 adsorption in the MOR-type zeolite is located at the side-pocket and that its size (i.e., the confinement effect) is the key to the performance by comparing its adsorption behavior to those obtained from a number of other zeolites with varying pore space sizes.
Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure–performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to ∼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Collapse