1
|
Chen X, Holze R. Polymer Electrolytes for Supercapacitors. Polymers (Basel) 2024; 16:3164. [PMID: 39599254 PMCID: PMC11598227 DOI: 10.3390/polym16223164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Because of safety concerns associated with the use of liquid electrolytes and electrolyte solutions, options for non-liquid materials like gels and polymers to be used as ion-conducting electrolytes have been explored intensely, and they attract steadily growing interest from researchers. The low ionic conductivity of most hard and soft solid materials was initially too low for practical applications in supercapacitors, which require low internal resistance of a device and, consequently, highly conducting materials. Even if an additional separator may not be needed when the solid electrolyte already ensures reliable separation of the electrodes, the electrolytes prepared as films or membranes as thin as practically acceptable, resistance may still be too high even today. Recent developments with gel electrolytes sometimes approach or even surpass liquid electrolyte solutions, in terms of effective conductance. This includes materials based on biopolymers, renewable raw materials, materials with biodegradability, and better environmental compatibility. In addition, numerous approaches to improving the electrolyte/electrode interaction have yielded improvements in effective internal device resistance. Reported studies are reviewed, material combinations are sorted out, and trends are identified.
Collapse
Affiliation(s)
- Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Rudolf Holze
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
- Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Konwar S, Siyahjani Gultekin S, Gultekin B, Kumar S, Punetha VD, Yahya MZAB, Diantoro M, Latif FA, Mohd Noor IS, Singh PK. Stable Efficient Solid-State Supercapacitors and Dye-Sensitized Solar Cells Using Ionic Liquid-Doped Solid Biopolymer Electrolyte. ACS OMEGA 2024; 9:39696-39702. [PMID: 39346854 PMCID: PMC11425618 DOI: 10.1021/acsomega.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
As synthetic and nonbiodegradable compounds are becoming a great challenge for the environment, developing polymer electrolytes using naturally occurring biodegradable polymers has drawn considerable research interest to replace traditional aqueous electrolytes and synthetic polymer-based polymer electrolytes. This study shows the development of a highly conducting ionic liquid (1-hexyl-3-methylimidazolium iodide)-doped corn starch-based polymer electrolyte. A simple solution cast method is used to prepare biopolymer-based polymer electrolytes and characterized using different electrical, structural, and photoelectrochemical studies. Prepared polymer electrolytes are optimized based on ionic conductivity, which shows an ionic conductivity as high as 1.90 × 10-3 S/cm. Fourier transform infrared spectroscopy (FTIR) confirms the complexation and composite nature, while X-ray diffraction (XRD) and polarized optical microscopy (POM) affirm the reduction of crystallinity in biopolymer electrolytes after doping with ionic liquid (IL). Thermal and photoelectrochemical studies further affirm that synthesized material is well stable above 200 °C and shows a wide electrochemical window of 3.91 V. The ionic transference number measurement (t ion) confirms the predominance of ionic charge carriers in the present system. An electric double-layer capacitor (EDLC) and a dye-sensitized solar cell (DSSC) were fabricated by using the highest conducting corn starch polymer electrolyte. The fabricated EDLC and DSSC delivered an average specific capacitance of 130 F/g and an efficiency of 1.73% in one sun condition, respectively.
Collapse
Affiliation(s)
- Subhrajit Konwar
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
- Department
of Physics, Noida Institute of Engineering
and Technology, Greater Noida 201306, India
| | - Sirin Siyahjani Gultekin
- Faculty
of Engineering, Department of Chemical Engineering Canakkale, Onsekiz Mart University, Canakkale 17100, Turkey
- Solar
Energy Institute, Ege University, Bornova, Izmir 35100, Turkey
| | - Burak Gultekin
- Solar
Energy Institute, Ege University, Bornova, Izmir 35100, Turkey
| | - Sushant Kumar
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| | - Vinay Deep Punetha
- Centre
of Excellence for Research, P P Savani University, NH 8, GETCO, Kosamba 394125, India
| | - Muhd Zu Azhan Bin Yahya
- Faculty of
Defence Science and Technology, Universiti
Pertahanan Nasional Malaysia (UPNM), 57000 Kuala Lumpur, Malaysia
| | - Markus Diantoro
- Department
of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, J1, Semarang 5, Malang 65145, Indonesia
| | - Famiza Abdul Latif
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Malaysia
| | - Ikhwan Syafiq Mohd Noor
- Physics
Division, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Pramod K. Singh
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| |
Collapse
|
3
|
Zhang Z, Zhu N, Teng Q, Wang J, Wan X. Fire-resistant and low-temperature self-healing bio-based hydrogel electrolytes based on peach gum polysaccharide/sisal nanofibers for flexible supercapacitors. Int J Biol Macromol 2024; 276:133759. [PMID: 38986983 DOI: 10.1016/j.ijbiomac.2024.133759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The introduction of flame retardancy and low-temperature self-healing capacities in hydrogel electrolytes are crucial for promoting the cycle stability and durability of the flexible supercapacitors in extreme environments. Herein, biomass-based dual-network hydrogel electrolyte (named PSBGL), was synthesized with borax crosslinked peach gum polysaccharide/sisal nanofibers composite, and its application in flexible supercapacitors was also investigated in detail. The dynamic cross-linking of the dual-network endows the PSBGL with excellent self-healing performance, enabling ultrafast self-healing within seconds at both room temperature and extreme low temperatures. The PSBGL bio-based hydrogel electrolyte can maintain the integrity of the carbon layer structure with limiting oxygen index of 56 % after 60 s of combustion under a flame gun. Additionally, the PSBGL exhibits high ionic conductivity (30.12 mS cm-1), good tensile strength (1.78 MPa), and robust adhesion to electrodes (1.15 MPa). The assembled supercapacitors demonstrate a high specific capacitance of 187.8 F g-1 at 0.5 A g-1, with 95.9 % capacitance retention rate after 10,000 cycles at room temperature. Importantly, even under extreme temperatures of 60 °C and -35 °C, the supercapacitors can also maintain high capacitance retention rates of 90.1 % and 86.5 % after 10,000 cycles. This work fills the gap between biomaterial design and high-performance flexible supercapacitors.
Collapse
Affiliation(s)
- Zuocai Zhang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Nannan Zhu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Qijin Teng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xuejuan Wan
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
4
|
Aziz SB, Murad AR, Abdulwahid RT, Aziz DM, Abdalrahman AA, Abdullah RM, Kadir MFZ, Abdullah OG, Halim NA, Hassan J. Plasticised chitosan: Dextran polymer blend electrolyte for energy harvesting application: Tuning the ion transport and EDLC charge storage capacity through TiO 2 dispersion. Int J Biol Macromol 2024; 273:133203. [PMID: 38885860 DOI: 10.1016/j.ijbiomac.2024.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Reserach and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq.
| | - Ary R Murad
- Department of Chemistry, College of Science, Charmo University, Chamchamal, Sulaymaniyah 46023, Iraq
| | - Rebar T Abdulwahid
- Department of Physics, College of Education, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Dara M Aziz
- Department of Chemistry, College of Science, University of Raparin, Kurdistan Region 46012, Ranya, Iraq
| | - Ari A Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Ranjdar M Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - M F Z Kadir
- Centre for Ionic Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, Malaysia; Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Omed Gh Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Norhana Abdul Halim
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Zou C, Chen L, Liu Q, Lu W, Sun X, Liu J, Lei Y, Zhao W, Liu Y. Flexible Aluminum-Air Battery Based on High-Performance Three-Dimensional Dual-Network PVA/KC/KOH Composite Gel Polymer Electrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9999-10007. [PMID: 38696767 DOI: 10.1021/acs.langmuir.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
With a large theoretical capacity and high energy density, aluminum-air batteries are a promising energy storage device. However, the rigid structure and liquid electrolyte of a traditional aluminum-air battery limit its application potential in the field of flexible electronics, and the irreversible corrosion of its anode greatly reduces the battery life. To solve the above problems, a PVA/KC/KOH (2 M) composite gel polymer electrolyte (GPE) with a three-dimensional dual-network structure consisting of polyvinyl alcohol (PVA), kappa-carrageenan (KC), and potassium hydroxide was prepared in this paper by a simple two-step method and applied in aluminum-air batteries. At room temperature, the ionic conductivity of the PVA/KC/KOH (2 M) composite GPE was found to be up to 6.50 × 10-3 S cm-1. By utilizing this composite GPE, a single flexible aluminum-air battery was assembled and achieved a maximum discharge voltage of 1.2 V at 5 mA cm-2, with discharge time exceeding 3 h. Moreover, the single flexible aluminum-air battery maintains good electrochemical performance under various deformation modes, and the output voltage of the battery remains at about 99% after 300 cycles. The construction of flexible aluminum-air batteries based on a three-dimensional dual-network PVA/KC/KOH composite GPE provides excellent safety and high-multiplication capabilities for aluminum-air batteries, making them potential candidates for various flexible device applications.
Collapse
Affiliation(s)
- Chang Zou
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Li Chen
- BYD Automobile Co., Ltd., Xi'an 710119, China
| | - Qingye Liu
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wei Lu
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Xueyan Sun
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jun Liu
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Shaanxi Coal Geology Group Company Limited, Xi'an 710069, China
| | - Yuan Lei
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wei Zhao
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Yilun Liu
- School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Sadiq NM, Abdulwahid RT, Aziz SB, Woo HJ, Kadir MFZ. Chitosan as a suitable host for sustainable plasticized nanocomposite sodium ion conducting polymer electrolyte in EDLC applications: Structural, ion transport and electrochemical studies. Int J Biol Macromol 2024; 265:130751. [PMID: 38471616 DOI: 10.1016/j.ijbiomac.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.
Collapse
Affiliation(s)
- Niyaz M Sadiq
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah 46001, Iraq
| | - Rebar T Abdulwahid
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University Sulaimaniya, Sulaymaniyah 46001, Kurdistan Region, Iraq; Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaymaniyah 46001, Kurdistan Region, Iraq.
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah 46001, Iraq; Department of Physics, College of Science, Charmo University, 46023 Chamchamal, Sulaymaniyah, Iraq.
| | - H J Woo
- Center for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd F Z Kadir
- Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Universiti Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Liu W, Li Z, Pan F, He Q, Zhang Q. Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors. RSC Adv 2023; 13:34652-34659. [PMID: 38024981 PMCID: PMC10680142 DOI: 10.1039/d3ra05899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Solid polymer electrolytes (SPEs) encounter the challenge of balancing high ionic conductivity and mechanical strength. Ionic liquids, which are among the contenders to be used in high-performance supercapacitors, have difficulty infiltrating commercial polyolefin separators for combined applications. In this study, a novel SPE involving uniform infiltration in the micropores of commercial polyolefin separators with polyethylene oxide (PEO), lithium salt, and different proportions of added ionic liquid was developed. The composite membranes combining ionic liquid-filled SPE with polypropylene (PP) microporous separators simultaneously achieve excellent mechanical strength and high-ionic conductivity. The low wettability of pure ionic liquids and commercial polyolefin-based separators is addressed. The 70 wt% IL-filled solid electrolyte composite membrane (PLI(70)@PP) exhibits a high ionic conductivity (2.9 × 10-3 S cm-1), low resistance at the electrolyte-electrode interface and excellent mechanical strength (128 MPa) at 25 °C. The all-solid-state supercapacitor using PLI(70)@PP exhibits a specific capacitance of 158 F g-1 at 0.1 A g-1 and stable cycle performance. The proposed method can be performed via high-volume roll-to-roll processing to obtain high-performance all-solid-state supercapacitors (ASSCs) for engineering applications.
Collapse
Affiliation(s)
- Weidong Liu
- College of Automotive Engineering, Jilin University Changchun 130025 China +86 15843102088
- State Key Laboratory of Automotive Simulation and Control, Jilin University Changchun 130012 China
| | - Zhiyun Li
- College of Automotive Engineering, Jilin University Changchun 130025 China +86 15843102088
- State Key Laboratory of Automotive Simulation and Control, Jilin University Changchun 130012 China
| | - Fang Pan
- College of Automotive Engineering, Jilin University Changchun 130025 China +86 15843102088
- State Key Laboratory of Automotive Simulation and Control, Jilin University Changchun 130012 China
| | - Qingyi He
- Feynman Technology (Qingdao) Co., Ltd. Qingdao 266000 China
| | - Qiushi Zhang
- College of Automotive Engineering, Jilin University Changchun 130025 China +86 15843102088
- State Key Laboratory of Automotive Simulation and Control, Jilin University Changchun 130012 China
| |
Collapse
|
8
|
Gourji FH, Rajaramanan T, Kishore A, Heggertveit M, Velauthapillai D. Hierarchical Cube-in-Cube Cobalt-Molybdenum Phosphide Hollow Nanoboxes Derived from the MOF Template Strategy for High-Performance Supercapacitors. ACS OMEGA 2023; 8:23446-23456. [PMID: 37426278 PMCID: PMC10323944 DOI: 10.1021/acsomega.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The design of hierarchical hollow nanostructures with complex shell architectures is an attractive and effective way to obtain a desirable electrode material for energy storage application. Herein, we report an effective metal-organic framework (MOF) template-engaged method to synthesize novel double-shelled hollow nanoboxes, in terms of chemical composition and structure complexity, for supercapacitor application. Starting from cobalt-based zeolitic imidazolate framework (ZIF-67(Co)) nanoboxes as the removal template, we developed a rational preparation approach to synthesize cobalt-molybdenum-phosphide (CoMoP) double-shelled hollow nanoboxes (donated as CoMoP-DSHNBs) through (i) ion-exchange reaction, (ii) template etching, and (iii) phosphorization treatment, respectively. Notably, despite the previously reported works, the phosphorization was simply done using the facile solvothermal method, without employing annealing and high-temperature conditions, which can be considered as one of the merits of the current work. CoMoP-DSHNBs showed excellent electrochemical properties owing to their unique morphology, high surface area, and optimal elemental composition. In a three-electrode system, the target material showed a superior specific capacity of 1204 F g-1 at 1 A g-1 with a remarkable cycle stability of 87% after 20000 cycles. The hybrid device formed of activated carbon (AC) as the negative electrode and CoMoP-DSHNBs as the positive electrode exhibited a high specific energy density of 49.99 W h kg-1 and a maximum power density of 7539.41 W kg-1 with a great cycling stability of 84.5% after 20,000 cycles.
Collapse
Affiliation(s)
- Fatemeh Heidari Gourji
- Department
of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5063, Norway
| | - Tharmakularasa Rajaramanan
- Department
of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5063, Norway
| | - Amruthaa Kishore
- Department
of Mechanical and Marine Engineering, Western
Norway University of Applied Sciences, Inndalsveien 28, Bergen 5063, Norway
| | - Marte Heggertveit
- Department
of Mechanical and Marine Engineering, Western
Norway University of Applied Sciences, Inndalsveien 28, Bergen 5063, Norway
| | - Dhayalan Velauthapillai
- Department
of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5063, Norway
| |
Collapse
|
9
|
Satheesh A, Navaneeth P, Suneesh PV, C S, Kandasamy E. Synthesis, characterization and study of electrochemical applicability of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts for supercapacitor fabrication. RSC Adv 2023; 13:14737-14746. [PMID: 37197187 PMCID: PMC10184001 DOI: 10.1039/d3ra01958f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here we report the successful synthesis, fabrication, and testing of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium-based ionic liquids. Their applicability in energy storage is tested as gel polymer electrolytes (ILGPE) immobilized in poly(vinylidene fluoride-co-hexa-fluoropropylene) (PVDF-HFP) copolymer as a solid-state electrolyte in electric double layer capacitors (EDLC). Asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of tetrafluoroborates (BF4-) and hexafluorophosphates (PF6-) are synthesized by anion exchange metathesis reaction using 1,3-dialkyl-1,2,3-benzotriazolium bromide salts. N-Alkylation followed by quaternization reaction results in dialkyl substitution on 1,2,3-benzotriazole. The synthesized ionic liquids were characterized with 1H-NMR, 13C-NMR, and FTIR spectroscopy. Their electrochemical and thermal properties were studied using cyclic voltammetry, impedance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The 4.0 V potential windows obtained for asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of BF4- and PF6- are promising electrolytes for energy storage. ILGPE tested with symmetrical EDLC with a wide operating window from 0-6.0 V gave an effective specific capacitance of 8.85 F g-1 at a lower scan rate of 2 mV s-1, the energy density of 2.9 μW h and 11.2 mW g-1 power density. The fabricated supercapacitor was employed for lighting red LED (2 V, 20 mA).
Collapse
Affiliation(s)
- Anjitha Satheesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punnakkal Navaneeth
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punathil Vasu Suneesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Sarathchandran C
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Chennai India
| | - Elango Kandasamy
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| |
Collapse
|
10
|
Electrical properties of Mg2+ ion-conducting PEO: P(VdF-HFP) based solid blend polymer electrolytes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
12
|
Ishii C, Asatani K, Sakata I. Obtaining interactions among science, technology, and research policy for developing an innovation strategy: A case study of supercapacitors. Heliyon 2022; 8:e10721. [PMID: 36193537 PMCID: PMC9526165 DOI: 10.1016/j.heliyon.2022.e10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Comprehensive observations of science, technology, and research policy transactions are important for developing an innovation strategy. We propose a new method that combines the academic landscape and matrix analysis to understand the relationships among activities of three aspects of the technological landscape: science, technology, and research policy. First, we divided academic research into 28 knowledge domains by clustering a citation network of scientific papers. Next, we developed a new matrix classifying them into three groups: “mature technology,” “intermediate technology,” and “emerging technology.” The results showed that research domains in “emerging technology” showed a high rate of patent increase, indicating that they were commercializing rapidly. Finally, we identified the group that each country focused on, and this result reflected the countries' research policies. China and Singapore showed high rates, whereas Japan, France, and Germany had low values. This result reflects countries’ research policies and implies that specialty research areas differed by country. As above, our research result implies that academia, industry, and government have paid attention to knowledge domains in “emerging technology” and these are important for creating innovation. A supercapacitor, also known as an electric double layer capacitor or ultracapacitor, was selected as an example in our method. This research could help academic researchers, industrial companies, and policymakers in developing innovation strategies.
Collapse
Affiliation(s)
| | - Kimitaka Asatani
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ichiro Sakata
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Dannoun EMA, Aziz SB, Abdulwahid RT, Al-Saeedi SI, Nofal MM, Sadiq NM, Hadi JM. Study of MC:DN-Based Biopolymer Blend Electrolytes with Inserted Zn-Metal Complex for Energy Storage Devices with Improved Electrochemical Performance. MEMBRANES 2022; 12:769. [PMID: 36005684 PMCID: PMC9412581 DOI: 10.3390/membranes12080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Stable and ionic conducting electrolytes are needed to make supercapacitors more feasible, because liquid electrolytes have leakage problems and easily undergo solvent evaporation. Polymer-based electrolytes meet the criteria, yet they lack good efficiency due to limited segmental motion. Since metal complexes have crosslinking centers that can be coordinated with the polymer segments, they are regarded as an adequate method to improve the performance of the polymer-based electrolytes. To prepare plasticized proton conducting polymer composite (PPC), a simple and successful process was used. Using a solution casting process, methylcellulose and dextran were blended and impregnated with ammonium thiocyanate and zinc metal complex. A range of electrochemical techniques were used to analyze the PPC, including transference number measurement (TNM), linear sweep voltammetry (LSV), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The ionic conductivity of the prepared system was found to be 3.59 × 10-3 S/cm using the EIS method. The use of glycerol plasticizer improves the transport characteristics, according to the findings. The carrier species is found to have ionic mobility of 5.77 × 10-5 cm2 V-1 s-1 and diffusion coefficient of 1.48 × 10-6 cm2 s-1 for the carrier density 3.4 × 1020 cm-3. The TNM revealed that anions and cations were the predominant carriers in electrolyte systems, with an ionic transference value of 0.972. The LSV approach demonstrated that, up to 2.05 V, the film was stable, which is sufficient for energy device applications. The prepared PPC was used to create an electrical double-layer capacitor (EDLC) device. The CV plot exhibited the absence of Faradaic peaks in the CV plot, making it practically have a rectangular form. Using the GCD experiment, the EDLC exhibited low equivalence series resistance of only 65 Ω at the first cycle. The average energy density, power density, and specific capacitance values were determined to be 15 Wh/kg, 350 W/kg, and 128 F/g, respectively.
Collapse
Affiliation(s)
- Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region, Sulaymaniyah 46001, Iraq
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
14
|
Abubakar Abdulkadir B, Ojur Dennis J, Abdullahi Adam A, Mudassir Hassan Y, Asyiqin Shamsuri N, Shukur M. Preparation and characterization of solid biopolymer electrolytes based on polyvinyl alcohol/cellulose acetate blend doped with potassium carbonate (K2CO3) salt. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abdulkadir BA, Dennis JO, Adam AA, Al‐Dhahebi AM, Shukur MF. Novel electrospun
separator‐electrolyte
based on
PVA‐K
2
CO
3
‐SiO
2
‐cellulose
nanofiber for application in flexible energy storage devices. J Appl Polym Sci 2022. [DOI: 10.1002/app.52308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bashir Abubakar Abdulkadir
- Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
- Centre of Innovative Nanostructure and Nanodevices (COINN) Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
- Department of Chemistry Gombe State University Gombe Nigeria
| | - John Ojur Dennis
- Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Abbas Abdullahi Adam
- Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Adel Mohammed Al‐Dhahebi
- Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
- Department of Mechanical Engineering UniversitI Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Muhammad F. Shukur
- Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
- Centre of Innovative Nanostructure and Nanodevices (COINN) Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| |
Collapse
|
16
|
Aziz SB, Dannoun EMA, Brza MA, Sadiq NM, Nofal MM, Karim WO, Al-Saeedi SI, Kadir MFZ. An Investigation into the PVA:MC:NH 4Cl-Based Proton-Conducting Polymer-Blend Electrolytes for Electrochemical Double Layer Capacitor (EDLC) Device Application: The FTIR, Circuit Design and Electrochemical Studies. Molecules 2022; 27:1011. [PMID: 35164273 PMCID: PMC8839426 DOI: 10.3390/molecules27031011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10-3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal, Sulaimania 46023, Iraq;
| | - Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Wrya O. Karim
- Chemistry Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Sameerahl I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nuourah Bint Abdulrahman University, Riyadh 11586, Saudi Arabia;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
17
|
Chen L, Li B, Zhu L, Deng X, Sun X, Liu Y, Zhang C, Zhao W, Chen X. A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries. RSC Adv 2021; 11:39476-39483. [PMID: 35492453 PMCID: PMC9044495 DOI: 10.1039/d1ra07180g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022] Open
Abstract
Aluminum–air batteries are promising electronic power sources because of their low cost and high energy density. However, traditional aluminum–air batteries are greatly restricted from being used in the field of flexible electronics due to the rigid battery structure, and the irreversible corrosion of the anode by the alkaline electrolyte, which greatly reduces the battery life. To address these issues, a three-dimensional dual-network interpenetrating structure PVA/LiCl/PEO composite gel polymer electrolyte (GPE) is proposed. The gel polymer electrolyte exhibits good flexibility and high ionic conductivity (σ = 6.51 × 10−3 S cm−1) at room temperature. Meanwhile, benefiting from the high-performance GPE, an assembled aluminum–air coin cell shows a highest discharge voltage of 0.73 V and a peak power density (Pmax) of 3.31 mW cm−2. The Al specific capacity is as high as 735.2 mA h g−1. A flexible aluminum–air battery assembled using the GPE also performed stably in flat, bent, and folded states. This paper provides a cost-effective and feasible way to fabricate a composite gel polymer electrolyte with high performance for use in flexible aluminum–air batteries, suitable for a variety of energy-related devices. Problems relating to the leakage of alkaline liquid electrolyte, the evaporation of water, and flexibility in traditional aluminum–air batteries are solved in this study.![]()
Collapse
Affiliation(s)
- Li Chen
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Boqiao Li
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Liangliang Zhu
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xiaobin Deng
- Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xueyan Sun
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Yilun Liu
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Chen Zhang
- First Aircraft Institute of Aviation Industry Corporation Xi'an 710089 China
| | - Wei Zhao
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xi Chen
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
18
|
Design of plasticized proton conducting Chitosan:Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Nofal MM, Hadi JM, Aziz SB, Brza MA, Asnawi ASFM, Dannoun EMA, Abdullah AM, Kadir MFZ. A Study of Methylcellulose Based Polymer Electrolyte Impregnated with Potassium Ion Conducting Carrier: Impedance, EEC Modeling, FTIR, Dielectric, and Device Characteristics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4859. [PMID: 34500952 PMCID: PMC8432717 DOI: 10.3390/ma14174859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
In this research, a biopolymer-based electrolyte system involving methylcellulose (MC) as a host polymeric material and potassium iodide (KI) salt as the ionic source was prepared by solution cast technique. The electrolyte with the highest conductivity was used for device application of electrochemical double-layer capacitor (EDLC) with high specific capacitance. The electrical, structural, and electrochemical characteristics of the electrolyte systems were investigated using various techniques. According to electrochemical impedance spectroscopy (EIS), the bulk resistance (Rb) decreased from 3.3 × 105 to 8 × 102 Ω with the increase of salt concentration from 10 wt % to 40 wt % and the ionic conductivity was found to be 1.93 ×10-5 S/cm. The dielectric analysis further verified the conductivity trends. Low-frequency regions showed high dielectric constant, ε' and loss, ε″ values. The polymer-salt complexation between (MC) and (KI) was shown through a Fourier transformed infrared spectroscopy (FTIR) studies. The analysis of transference number measurement (TNM) supported ions were predominantly responsible for the transport process in the MC-KI electrolyte. The highest conducting sample was observed to be electrochemically constant as the potential was swept linearly up to 1.8 V using linear sweep voltammetry (LSV). The cyclic voltammetry (CV) profile reveals the absence of a redox peak, indicating the presence of a charge double-layer between the surface of activated carbon electrodes and electrolytes. The maximum specific capacitance, Cs value was obtained as 118.4 F/g at the sweep rate of 10 mV/s.
Collapse
Affiliation(s)
- Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimaniyah 46001, Iraq;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimaniyah 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimaniyah 46001, Iraq
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimaniyah 46001, Iraq;
| | - Ahmad S. F. M. Asnawi
- Chemical Engineering Section, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), University Kuala Lumpur, Alor Gajah 78000, Malaysia;
| | - Elham M. A. Dannoun
- General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Aziz M. Abdullah
- Department of Applied Physics, College of Medical and Applied Sciences, Charmo University, Peshawa Street, Chamchamal 46023, Iraq;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
20
|
Aziz SB, Asnawi ASFM, Kadir MFZ, Alshehri SM, Ahamad T, Yusof YM, Hadi JM. Structural, Electrical and Electrochemical Properties of Glycerolized Biopolymers Based on Chitosan (CS): Methylcellulose (MC) for Energy Storage Application. Polymers (Basel) 2021; 13:polym13081183. [PMID: 33916979 PMCID: PMC8067534 DOI: 10.3390/polym13081183] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS–MC–NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10−4 S cm−1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Ahmad S. F. M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | | | - Saad M. Alshehri
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - Tansir Ahamad
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| |
Collapse
|
21
|
Wang M, Zhang T, Cui M, Liu W, Liu X, Zhao J, Zhou J. Sub-nanopores-containing N,O-codoped porous carbon from molecular-scale networked polymer hydrogel for solid-state supercapacitor. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Abdulkadir BA, Ojur Dennis J, Al-Hadeethi Y, Shukur MFBA, Mkawi EM, Al-Harbi N, Ibnaouf KH, Aldaghri O, Usman F, Abbas Adam A. Optimization of the Electrochemical Performance of a Composite Polymer Electrolyte Based on PVA-K 2CO 3-SiO 2 Composite. Polymers (Basel) 2020; 13:polym13010092. [PMID: 33379413 PMCID: PMC7796327 DOI: 10.3390/polym13010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Composite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (K2CO3) salt, and silica (SiO2) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO2 in wt.% were incorporated into PVA-K2CO3 complex to prepare the CPEs. To study the effect of SiO2 on PVA-K2CO3 composites, the developed electrolytes were characterized for their chemical structure (FTIR), morphology (FESEM), thermal stabilities (TGA), glass transition temperature (differential scanning calorimetry (DSC)), ionic conductivity using electrochemical impedance spectroscopy (EIS), and potential window using linear sweep voltammetry (LSV). Physicochemical characterization results based on thermal and structural analysis indicated that the addition of SiO2 enhanced the amorphous region of the PVA-K2CO3 composites which enhanced the dissociation of the K2CO3 salt into K+ and CO32- and thus resulting in an increase of the ionic conduction of the electrolyte. An optimum ionic conductivity of 3.25 × 10-4 and 7.86 × 10-3 mScm-1 at ambient temperature and at 373.15 K, respectively, at a potential window of 3.35 V was observed at a composition of 15 wt.% SiO2. From FESEM micrographs, the white granules and aggregate seen on the surface of the samples confirm that SiO2 particles have been successfully dispersed into the PVA-K2CO3 matrix. The observed ionic conductivity increased linearly with increase in temperature confirming the electrolyte as temperature-dependent. Based on the observed performance, it can be concluded that the CPEs based on PVA-K2CO3-SiO2 composites could serve as promising candidate for portable and flexible next generation energy storage devices.
Collapse
Affiliation(s)
- Bashir Abubakar Abdulkadir
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
- Correspondence:
| | - John Ojur Dennis
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - E. M. Mkawi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - Nuha Al-Harbi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.-H.); (E.M.M.); (N.A.-H.)
| | - K. H. Ibnaouf
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia; (K.H.I.); (O.A.)
| | - O. Aldaghri
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia; (K.H.I.); (O.A.)
| | - Fahad Usman
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| | - Abdullahi Abbas Adam
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Tronoh 32610, Malaysia; (J.O.D.); (M.F.B.A.S.); (F.U.); (A.A.A.)
| |
Collapse
|
24
|
Asnawi ASFM, Aziz SB, Saeed SR, Yusof YM, Abdulwahid RT, Al-Zangana S, Karim WO, Kadir MFZ. Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics. MEMBRANES 2020; 10:E389. [PMID: 33276495 PMCID: PMC7760615 DOI: 10.3390/membranes10120389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
The polymer electrolyte based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10-6 S cm-1 at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge-discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 Ω) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%).
Collapse
Affiliation(s)
- Ahmad S. F. M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Shujahadeen B. Aziz
- Hameed majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Salah R. Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46001, Iraq;
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Rebar T. Abdulwahid
- Hameed majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Iraq;
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
| | - Mohd. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
25
|
Khanam Z, Liu J, Song S. Flexible graphene paper electrode prepared via polyvinyl alcohol-assisted shear-exfoliation for all-solid-state polymer supercapacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Hadi JM, Aziz SB, R. Saeed S, Brza MA, Abdulwahid RT, Hamsan MH, M. Abdullah R, Kadir MFZ, Muzakir SK. Investigation of Ion Transport Parameters and Electrochemical Performance of Plasticized Biocompatible Chitosan-Based Proton Conducting Polymer Composite Electrolytes. MEMBRANES 2020; 10:E363. [PMID: 33233480 PMCID: PMC7700473 DOI: 10.3390/membranes10110363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
In this study, biopolymer composite electrolytes based on chitosan:ammonium iodide:Zn(II)-complex plasticized with glycerol were successfully prepared using the solution casting technique. Various electrical and electrochemical parameters of the biopolymer composite electrolytes' films were evaluated prior to device application. The highest conducting plasticized membrane was found to have a conductivity of 1.17 × 10-4 S/cm. It is shown that the number density, mobility, and diffusion coefficient of cations and anions fractions are increased with the glycerol amount. Field emission scanning electron microscope and Fourier transform infrared spectroscopy techniques are used to study the morphology and structure of the films. The non-Debye type of relaxation process was confirmed from the peak appearance of the dielectric relaxation study. The obtained transference number of ions (cations and anions) and electrons for the highest conducting sample were identified to be 0.98 and 0.02, respectively. Linear sweep voltammetry shows that the electrochemical stability of the highest conducting plasticized system is 1.37 V. The cyclic voltammetry response displayed no redox reaction peaks over its entire potential range. It was discovered that the addition of Zn(II)-complex and glycerol plasticizer improved the electric double-layer capacitor device performances. Numerous crucial parameters of the electric double-layer capacitor device were obtained from the charge-discharge profile. The prepared electric double-layer capacitor device showed that the initial values of specific capacitance, equivalence series resistance, energy density, and power density are 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.
Collapse
Affiliation(s)
- Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Salah R. Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46023, Iraq;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 53100, Malaysia
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Muhamad H. Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - S. K. Muzakir
- Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 43600, Malaysia;
| |
Collapse
|
27
|
The Study of Structural, Impedance and Energy Storage Behavior of Plasticized PVA:MC Based Proton Conducting Polymer Blend Electrolytes. MATERIALS 2020; 13:ma13215030. [PMID: 33171877 PMCID: PMC7664675 DOI: 10.3390/ma13215030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this study, structural characterization, electrical properties and energy storage performance of plasticized polymer electrolytes based on polyvinyl alcohol/methylcellulose/ammonium thiocyanate (PVA/MC-NH4SCN) were carried out. An X-ray diffraction (XRD) study displayed that the plasticized electrolyte system with the uppermost value of direct current (DC) ionic conductivity was the most amorphous system. The electrolyte in the present work realized an ionic conductivity of 2.903 × 10−3 Scm−1 at room temperature. The main charge carrier in the electrolyte was found to be the ions with the ionic transference number (tion) of 0.912, compared to only 0.088 for the electronic transference number (telec). The electrochemical stability potential window of the electrolyte is 2.1 V. The specific capacitance was found to reduce from 102.88 F/g to 28.58 F/g as the scan rate increased in cyclic voltammetry (CV) analysis. The fabricated electrochemical double layer capacitor (EDLC) was stable up to 200 cycles with high efficiency. The specific capacitance obtained for the EDLC by using charge–discharge analysis was 132.7 F/g at the first cycle, which is slightly higher compared to the CV plot. The equivalent series resistance (ESR) increased from 58 to 171 Ω throughout the cycles, which indicates a good electrolyte/electrode contact. Ions in the electrolyte were considered to have almost the same amount of energy during the conduction process as the energy density is approximately at 14.0 Wh/kg throughout the 200 cycles. The power density is stabilized at the range of 1444.3 to 467.6 W/kg as the EDLC completed the cycles.
Collapse
|
28
|
Hor AA, Hashmi S. Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136826] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Mechanically robust and thermally stable electrochemical devices based on star-shaped random copolymer gel-electrolytes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Na R, Lu N, Li L, Liu Y, Luan J, Wang G. A Robust Conductive Polymer Network as a Multi‐Functional Binder and Conductive Additive for Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruiqi Na
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
| | - Nan Lu
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
| | - Leibo Li
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
| | - Yudong Liu
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
| | - Jiashuang Luan
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
| | - Guibin Wang
- Key Laboratory of High Performance Plastics Ministry of Education, College of ChemistryJilin University Changchun 130012 P. R. China
- Zhuhai College of Jilin University Zhuhai 519041 China
| |
Collapse
|
31
|
Asnawi ASFM, B. Aziz S, M. Nofal M, Hamsan MH, Brza MA, Yusof YM, Abdilwahid RT, Muzakir SK, Kadir MFZ. Glycerolized Li + Ion Conducting Chitosan-Based Polymer Electrolyte for Energy Storage EDLC Device Applications with Relatively High Energy Density. Polymers (Basel) 2020; 12:polym12061433. [PMID: 32604910 PMCID: PMC7361679 DOI: 10.3390/polym12061433] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/03/2022] Open
Abstract
In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10−4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
Collapse
Affiliation(s)
- Ahmed S. F. M. Asnawi
- Chemical Engineering Section, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Universiti Kuala Lumpur, Alor Gajah 78000, Malacca, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence: or
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
| | - Yuhanees M. Yusof
- Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Rebar T. Abdilwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Saifful K. Muzakir
- Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
32
|
Asnawi ASFM, Aziz SB, Nofal MM, Yusof YM, Brevik I, Hamsan MH, Brza MA, Abdulwahid RT, Kadir MFZ. Metal Complex as a Novel Approach to Enhance the Amorphous Phase and Improve the EDLC Performance of Plasticized Proton Conducting Chitosan-Based Polymer Electrolyte. MEMBRANES 2020; 10:membranes10060132. [PMID: 32630546 PMCID: PMC7344776 DOI: 10.3390/membranes10060132] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
This work indicates that glycerolized chitosan-NH4F polymer electrolytes incorporated with zinc metal complexes are crucial for EDLC application. The ionic conductivity of the plasticized system was improved drastically from 9.52 × 10−4 S/cm to 1.71 × 10−3 S/cm with the addition of a zinc metal complex. The XRD results demonstrated that the amorphous phase was enhanced for the system containing the zinc metal complex. The transference number of ions (tion) and electrons (te) were measured for two of the highest conducting electrolyte systems. It confirmed that the ions were the dominant charge carriers in both systems as tion values for CSNHG4 and CSNHG5 electrolytes were 0.976 and 0.966, respectively. From the examination of LSV, zinc improved the electrolyte electrochemical stability to 2.25 V. The achieved specific capacitance from the CV plot reveals the role of the metal complex on storage properties. The charge–discharge profile was obtained for the system incorporated with the metal complex. The obtained specific capacitance ranged from 69.7 to 77.6 F/g. The energy and power densities became stable from 7.8 to 8.5 Wh/kg and 1041.7 to 248.2 W/kg, respectively, as the EDLC finalized the cycles.
Collapse
Affiliation(s)
- Ahmad S. F. M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Correspondence:
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Yuhanees M. Yusof
- Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Gombak, Malaysia;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
33
|
Guan KH, Farhana NK, Omar FS, Saidi NM, Bashir S, Ramesh S, Ramesh K. Influence of tetraglyme towards magnesium salt dissociation in solid polymer electrolyte for electric double layer capacitor. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02070-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Han YK, Cheon JY, Kim T, Lee SB, Kim YD, Jung BM. A chemically bonded supercapacitor using a highly stretchable and adhesive gel polymer electrolyte based on an ionic liquid and epoxy-triblock diamine network. RSC Adv 2020; 10:18945-18952. [PMID: 35518312 PMCID: PMC9053874 DOI: 10.1039/d0ra02327b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022] Open
Abstract
Despite significant advances in the development of flexible gel polymer electrolytes (GPEs), there are still problems to be addressed to apply them to flexible electric double layer capacitors (EDLCs), including interfacial interactions between the electrolyte and electrode under deformation. Previously reported EDLCs using GPEs have laminated structures with weak interfacial interactions between the electrode and electrolyte, leading to fragility upon elongation and low power density due to lower utilization of the surface area of the carbon material in the electrode. To overcome these problems, we present a new strategy for constructing an epoxy-based GPE that can provide strong adhesion between electrode and electrolyte. The GPE is synthesized by polymerization of epoxy and an ionic liquid. This GPE shows high flexibility up to 509% and excellent adhesive properties that enable strong chemical bonding between the electrode and electrolyte. Moreover, the GPE is stable at high voltage and high temperature with high ionic conductivity of ∼10−3 S cm−1. EDLCs based on the developed GPE exhibit good compatibility between the electrode and electrolyte and work properly when deformed. The EDLCs also show a high specific capacitance of 99 F g−1, energy density of 113 W h kg−1, and power density of 4.5 kW g−1. The excellent performance of the GPE gives it tremendous potential for use in next generation electronic devices such as wearable devices. A chemically bonded supercapacitor using a stretchable and adhesive gel polymer electrolyte based on ionic liquid and epoxy for flexible devices.![]()
Collapse
Affiliation(s)
- You Kyung Han
- Department of Materials Science and Engineering
- Pusan National University
- Busan
- Republic of Korea
- Functional Composite Department
| | - Jae Yeong Cheon
- Functional Composite Department
- Korea Institute of Materials Science (KIMS)
- Changwon 51508
- Korea
| | - Taehoon Kim
- Functional Composite Department
- Korea Institute of Materials Science (KIMS)
- Changwon 51508
- Korea
| | - Sang Bok Lee
- Functional Composite Department
- Korea Institute of Materials Science (KIMS)
- Changwon 51508
- Korea
| | - Yang Do Kim
- Department of Materials Science and Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - Byung Mun Jung
- Functional Composite Department
- Korea Institute of Materials Science (KIMS)
- Changwon 51508
- Korea
| |
Collapse
|
35
|
Yong H, Park H, Jung J, Jung C. A fundamental approach to design of injectable high-content gel polymer electrolyte for activated carbon electrode supercapacitors. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Gunday ST, Cevik E, Yusuf A, Bozkurt A. Fabrication of Al
2
O
3
/IL‐Based Nanocomposite Polymer Electrolytes for Supercapacitor Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201900030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seyda Tugba Gunday
- Department of PhysicsIRMCImam Abdulrahman Bin Faisal University, 1982 Dammam 31441 Saudi Arabia
| | - Emre Cevik
- IRMCImam Abdulrahman Bin Faisal University PO Box:1982 Dammam 31441 Saudi Arabia
| | - Abdulmalik Yusuf
- Department of Bio&Nano Technology EngineeringIstanbul University 34320 Istanbul Turkey
| | - Ayhan Bozkurt
- Department of PhysicsIRMCImam Abdulrahman Bin Faisal University, 1982 Dammam 31441 Saudi Arabia
| |
Collapse
|
37
|
Lee HU, Jin JH, Kim SW. Effect of gel electrolytes on the performance of a minimized flexible micro-supercapacitor based on graphene/PEDOT composite using pen lithography. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chua S, Fang R, Sun Z, Wu M, Gu Z, Wang Y, Hart JN, Sharma N, Li F, Wang DW. Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. Chemistry 2018; 24:18180-18203. [PMID: 30328219 DOI: 10.1002/chem.201804781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 01/05/2023]
Abstract
Solid polymer electrolytes are of rapidly increasing importance for the research and development of future safe batteries with high energy density. The diversified chemistry and structures of polymers allow the utilization of a wide range of soft structures for all-polymer solid-state electrolytes. With equal importance is the hybrid solid-state electrolytes consisting of both "soft" polymeric structure and "hard" inorganic nanofillers. The recent emergence of the re-discovery of many two-dimensional layered materials has stimulated the booming of advanced research in energy storage fields, such as batteries, supercapacitors, and fuel cells. Of special interest is the mass transport properties of these 2D nanostructures for water, gas, or ions. This review aims at the current progress and prospective development of hybrid polymer-inorganic solid electrolytes based on important 2D materials, including natural clay and synthetic lamellar structures. The ion conduction mechanism and the fabrication, property and device performance of these hybrid solid electrolytes will be discussed.
Collapse
Affiliation(s)
- Stephanie Chua
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Ruopian Fang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhenhua Sun
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Minjie Wu
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Yuzuo Wang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Judy N Hart
- School of Materials Science and Engineering, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Feng Li
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Da-Wei Wang
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Wang J, Zhao Z, Song S, Ma Q, Liu R. High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors. Polymers (Basel) 2018; 10:E1179. [PMID: 30961104 PMCID: PMC6290635 DOI: 10.3390/polym10111179] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
With 1-methyl-2-pyrrolidinone (NMP) as the solvent, the biodegradable gel polymer electrolyte films are prepared based on poly(vinyl alcohol) (PVA), lithium bis(trifluoromethane)sulfonimide (LiTFSI), and 1-ethyl-3 methylimidazoliumbis(trifluoromethylsulfonyl)imide (EMITFSI) by means of solution casting. The films are characterized to evaluate their structural and electrochemical performance. The 60PVA-40LiTFSI + 10 wt.% EMITFSI system exhibits excellent mechanical properties and a high ionic transference number (0.995), indicating primary ionic conduction in the film. In addition, because of the flexibility of polymer chain segments, its relaxation time is as low as 5.30 × 10-7 s. Accordingly, a high ionic conductivity (3.6 × 10-3 S cm-1) and a wide electrochemical stability window (~5 V) are obtained. The electric double-layer capacitor (EDLC) based on this electrolyte system shows a specific capacitance of 101 F g-1 and an energy density of 10.3 W h kg-1, even after 1000 charge-discharge cycles at a current density of 0.4 A g-1 under a charging voltage of 2 V. All these excellent properties imply that the NMP-soluble 60PVA-40LiTFSI + 10 wt.% EMITFSI gel polymer electrolyte could be a promising electrolyte candidate for electrochemical device applications.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Zejia Zhao
- State Key Laboratory in Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Shenhua Song
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Qing Ma
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| | - Renchen Liu
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|