1
|
Abdi J, Mazloom G, Hayati B. Sonocatalytic degradation of tetracycline hydrochloride using SnO 2 hollow-nanofiber decorated with UiO-66-NH 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122572. [PMID: 39299111 DOI: 10.1016/j.jenvman.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, a porous hollow nanofiber SnO2 was decorated with UiO-66-NH2 nanoparticles with straightforward solvothermal method and utilized for sonocatalytic degradation of tetracycline (TC) by ultrasonic irradiation (USI). The prepared materials were characterized using different techniques such as SEM, EDS, FTIR, XRD, BET, XPS, UV-DRS, EIS, and zeta potential. SnO2 PHNF/UiO-66-NH2 nanocomposite offered the highest apparent rate constant of 0.0397 min-1 which was 6.3 and 3.1 times higher than those obtained for SnO2 PHNF and UiO-66-NH2, respectively. The integration of nanocomposite components revealed the synergy factor of 1.58, which can be due to the created heterojunctions resulted in efficiently charge carriers separation and retaining high redox ability. The effects of different affecting parameters such as TC initial concentration, pH of the solution, catalyst dosage, trapping agents, and coexisting anions on the catalytic performance were examined. The inhibitory effects of anions were confirmed to be decreased in the sequence of Cl- > NO3- > SO42-, while the sonocatalytic efficiency of the nanocomposite improved considerably in the presence of humic acid and bicarbonate. Also, the excellent performance of the catalyst was preserved during six successive cycles, suggesting the high stability of the prepared catalyst. In addition, based on the scavenger analysis, the created O2·-, OH·, and holes were contributed to the TC degradation. In conclusion, the creation heterojunction is an impressive methodology for improving the sonocatalytic activity of a catalyst, and SnO2 PHNF/UiO-66-NH2 nanocomposite was introduced as a satisfactory catalyst in sonocatalytic degradation of organic contaminants.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
2
|
Saveh H, Mazloom G, Abdi J. Synthesis of magnetic layered double hydroxide (Fe 3O 4@CuCr-LDH) decorated with ZIF-8 for efficient sonocatalytic degradation of tetracycline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121338. [PMID: 38823296 DOI: 10.1016/j.jenvman.2024.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
A series of Fe3O4@CuCr-LDH hybrids decorated with different amount of ZIF-8 (FLZ, 10-40 wt%) was prepared using simple methods and characterized with different techniques. The activity of the synthesized nanocomposites was investigated in the sonocatalytic degradation of tetracycline (TC) antibiotic from wastewater. When the content of ZIF-8 in the nanocomposite structure was 20 wt%, the FLZ-20 sonocatalyst exhibited the high performance in the sonocatalytic removal of TC. At optimum conditions (0.7 g/L catalyst dosage, pH of 7, 50 mg/L initial concentration of antibiotic, and 15 min sonication time) of the sonocatalytic removal of TC approached to 91.4% under ultrasonic irradiation (USI) using FLZ-20. This efficiency was much higher than those of obtained results by Fe3O4@CuCr-LDH and pristine ZIF-8. The formed ●OH and ●O2- exhibited the major roles in the sonocatalytic TC degradation process. The excellent performance of FLZ-20 can be attributed to the heterojunctions created between composite components, which could improve the electron transfer ability and effectively separate e-/h+ pairs. In addition, FLZ-20 showed the superior reusability and stability during three successive recycling. Moreover, the facile magnetically separation of the sonocatalyst from the aqueous solution was another outstanding feature, which prevents the formation of secondary pollutants. It can be concluded that the fabrication of heterojunctions is an efficient procedure to promote the sonocatalytic acting of the catalyst.
Collapse
Affiliation(s)
- Hannaneh Saveh
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
3
|
Asadi Z, Dobaradaran S, Arfaeinia H, Omidvar M, Farjadfard S, Foroutan R, Ramavandi B, Luque R. Photodegradation of ibuprofen laden-wastewater using sea-mud catalyst/H 2O 2 system: evaluation of sonication modes and energy consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16707-16718. [PMID: 36184705 DOI: 10.1007/s11356-022-23253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The main goal of the current investigation was to decontaminate ibuprofen (IBP) from hospital wastewater using sea mud as an H2O2 activator. Sea sludge was converted into catalysts at different temperatures and residence times in furnaces, and then tested in the removal of IBP, and the most efficient ones were reported for the production of catalysts. The catalyst was optimized at 400 °C and 3 h. SEM-mapping, FTIR, EDX, BET, and BJH experiments were used to characterize the catalyst. Experiments were done at two pulsed and continuous ultrasonication modes in a photoreactor, and their efficiencies were statistically compared. The designed variables included IBP concentration (10-100 mg/L), the catalyst concentration (0-3 g/L), pH (4-9), and time (10-90 min). The oxidation process had the maximum efficiency at pH 4, treatment time of 60 min, catalyst quantity of 5 g/L, and IBP content of 50 mg/L. The catalyst was recycled, and in the fifth stage, the removal efficiency of IBP was reduced to 50%. The amount of energy consumed for treating IBP laden-wastewater using the evaluated catalyst in two modes of continuous and pulsed ultrasonic was calculated as 102 kW h/m3 and 10 kW h/m3, respectively. IBP oxidation process was fitted with the first-order kinetic model. The system can be proposed for purifying hospital and pharmaceutical wastewaters.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Omidvar
- Department of Occupational Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,Km 396, 14014, Cordoba, Spain
| |
Collapse
|
4
|
Pani N, T S AS, Menon PM, Boruah S, Patel B, Kaul DS. Electrocoagulation followed by sound agitation for removal of nitrogen and carbon-based pollutants from industrial wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2861-2877. [PMID: 36515194 DOI: 10.2166/wst.2022.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The herculean imprecation of nitrogen-based pollutant like ammoniacal nitrogen (AN) and chemical oxygen demand (COD) on aquatic milieu is now a concern for the dye, pharma and fertiliser industries. Wastewater from these is characterised with high concentration of AN, COD and total dissolved solids (TDS), treatment of which is of utmost importance for a cleaner environment. In the current research work, an attempt was made to apply integrated electro-coagulation (EC) - sonication process for the removal of COD and AN from highly acidic dye intermediate wastewater containing high to very high concentration of COD and AN. Systematic laboratory experiments were conducted for the treatment of dye intermediate wastewater and influences of pH (5-11), applied voltage (0.5-4V) and electrolysis time (30-120 min) were investigated. A Response Surface Methodology (RSM) was used for optimization of major operating parameters for EC. The conditions for minimum fraction remaining (C/C0), was found to be same for both COD and AN, i.e. pH 7, time 90 min and applied voltage 2V. The C/Co value for COD and AN were 0.244 and 0.302, respectively. The C/Co value of COD and AN in combined EC-Sonication process with optimum operating conditions were 0.145 and 0.228 respectively with sonication time 60 min at a frequency of 33 kHz. Thus, EC - sonication process is an efficacious process for their removal from dye industrial wastewater.
Collapse
Affiliation(s)
- Nibedita Pani
- Department of Science, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anantha Singh T S
- Department of Civil Engineering, National Institute of Technology, Calicut, India E-mail:
| | - Poornima M Menon
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Shrestha Boruah
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Shankar Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Azizi M, Teymourian T, Teymoorian T, Gheibi M, Kowsari E, Hajiaghaei–Keshteli M, Ramakrishna S. A smart and sustainable adsorption-based system for decontamination of amoxicillin from water resources by the application of cellular lightweight concrete: experimental and modeling approaches. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Qutob M, Shakeel F, Alam P, Alshehri S, Ghoneim MM, Rafatullah M. A review of radical and non-radical degradation of amoxicillin by using different oxidation process systems. ENVIRONMENTAL RESEARCH 2022; 214:113833. [PMID: 35839907 DOI: 10.1016/j.envres.2022.113833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds have piqued the interest of researchers due to an increase in their demand, which increases the possibility of leakage into the environment. Amoxicillin (AMX) is a penicillin derivative used for the treatment of infections caused by gram-positive bacteria. AMX has a low metabolic rate in the human body, and around 80-90% is unmetabolized. As a result, AMX residuals should be treated immediately to avoid further accumulation in the environment. Advanced oxidation process techniques are an efficient way to degrade AMX. This review attempts to collect, organize, summarize, and analyze the most up to date research linked to the degradation of AMX by different advanced oxidation process systems including photocatalytic, ultrasonic, electro-oxidation, and advanced oxidation process-based on partials. The main topics investigated in this review are degradation mechanism, degradation efficiency, catalyst stability, the formation of AMX by-products and its toxicity, in addition, the influence of different experimental conditions was discussed such as pH, temperature, scavengers, the concentration of amoxicillin, oxidants, catalyst, and doping ratio. The degradation of AMX could be inhibited by very high values of pH, temperature, AMX concentration, oxidants concentration, catalyst concentration, and doping ratio. Several AMX by-products were discovered after oxidation treatment, and several of them had lower or same values of LC50 (96 h) fathead minnow of AMX itself, such as m/z 384, 375, 349, 323, 324, 321, 318, with prediction values of 0.70, 1.10, 1.10 0.42, 0.42, 0.42, and 0.42 mg/L, respectively. We revealed that there is no silver bullet system to oxidize AMX from an aqueous medium. However, it is recommended to apply hybrid systems such as Photo-electro, Photo-Fenton, Electro-Fenton, etc. Hybrid systems are capable to cover the drawbacks of the single system. This review may provide important information, as well as future recommendations, for future researchers interested in treating AMX using various AOP systems, allowing them to improve the applicability of their systems and successfully oxidize AMX from an aqueous medium.
Collapse
Affiliation(s)
- Mohammad Qutob
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Facile synthesis and preparation of graphite/chitosan/graphene quantum dots nanocomposite cathode for electrochemical removal of tetracycline from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Nivetha MRS, Kumar JV, Ajarem JS, Allam AA, Manikandan V, Arulmozhi R, Abirami N. Construction of SnO 2/g-C 3N 4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. ENVIRONMENTAL RESEARCH 2022; 209:112809. [PMID: 35104479 DOI: 10.1016/j.envres.2022.112809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The current study mainly focused on the fabrication of 2D graphitic carbon nitride-supported tin oxide nanoparticles (SnO2/g-C3N4) for the effective degradation of Amoxicillin (AMX). Tin oxide (SnO2) NPs were prepared by green and easy modification technique, and then it is decorated over g-C3N4 nanosheets. The structural morphology and surface composition of the synthesized SnO2/g-C3N4 nanocomposite were fully analysed by UV-Vis, XRD, XPS, and HR-SEM with EDAX, FT-IR, and BET analysis. The (HR-TEM) microscopy, the size of SnO2 NPs which as a diameter is about 6.2 nm. The Raman analysis revealed that the SnO2/g-C3N4 composite had a moderate graphitic structure, with a measured ID/Ig value of 0.79. The degradation efficiency of antibiotic pollutant AMX and pharma effluent treatment was monitored by UV spectroscopy. The optical band gap of SnO2 (2.9 eV) and g-C3N4 (2.8 eV) photocatalyst was measured by Tauc plots. To investigate the mechanism through the photodegradation efficiency of the catalyst was analysed by using different Scavenger EDTA-2Na holes (h+) has a greater contribution towards the degradation process. Under visible irradiation, SnO2/g-C3N4 nanocomposite has exhibited an excellent degradation performance of 92.1% against AMX and 90.8% for pharmaceutical effluent in 80 min.
Collapse
Affiliation(s)
- Michael Raj Sherlin Nivetha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jothi Vinoth Kumar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Rajaram Arulmozhi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Natarajan Abirami
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
9
|
Feng X, Li X, Luo H, Su B, Ma J. Facile synthesis of Ni-based layered double hydroxides with superior photocatalytic performance for tetracycline antibiotic degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. A comprehensive review on MXenes as new nanomaterials for degradation of hazardous pollutants: Deployment as heterogeneous sonocatalysis. CHEMOSPHERE 2022; 287:132387. [PMID: 34600004 DOI: 10.1016/j.chemosphere.2021.132387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
MXene-based nanomaterials (MBNs) are two-dimensional materials that exhibit a series of sought after properties, including rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophobicity, thermal stability, and large specific surface area. MBNs have an exemplar performance when applied for the degradation of hazardous pollutants with various advanced oxidation processes such as heterogeneous sonocatalysis. As such, this work focuses on the sonocatalytic degradation of various hazardous pollutants using MXene-based catalysts. First, the general principles of sonocatalysis are examined, followed by an analysis of the main components of the MXene-based sonocatalysts and their application for pollutant degradation. Lastly, ongoing challenges are highlighted with recommendations to address the issues.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam.
| |
Collapse
|
11
|
Liu P, Wu Z, Abramova AV, Cravotto G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. ULTRASONICS SONOCHEMISTRY 2021; 74:105566. [PMID: 33975189 PMCID: PMC8122362 DOI: 10.1016/j.ultsonch.2021.105566] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic residues in water are general health and environmental risks due to the antibiotic-resistance phenomenon. Sonication has been included among the advanced oxidation processes (AOPs) used to remove recalcitrant contaminants in aquatic environments. Sonochemical processes have shown substantial advantages, including cleanliness, safety, energy savings and either negligible or no secondary pollution. This review provides a wide overview of the different protocols and degradation mechanisms for antibiotics that either use sonication alone or in hybrid processes, such as sonication with catalysts, Fenton and Fenton-like processes, photolysis, ozonation, etc.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Anna V Abramova
- Federal State Budgetary Institution of Science N.S. Kurnakov Institute of General Inorganic Chemistry of the Russian Academy of Sciences, GSP-1, V-71, Leninsky Prospekt 31, 119991 Moscow, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| |
Collapse
|
12
|
Damiri F, Dobaradaran S, Hashemi S, Foroutan R, Vosoughi M, Sahebi S, Ramavandi B, Camilla Boffito D. Waste sludge from shipping docks as a catalyst to remove amoxicillin in water with hydrogen peroxide and ultrasound. ULTRASONICS SONOCHEMISTRY 2020; 68:105187. [PMID: 32485627 DOI: 10.1016/j.ultsonch.2020.105187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 05/20/2023]
Abstract
The waste sludge from shipping docks contains important elements that can be used as a catalyst after proper processing. The purpose of this study was to remove of amoxicillin (AMX) from the aquatic environment using waste sludge from shipping docks as catalyst in the presence of hydrogen peroxide/ultrasound waves. The catalyst was produced by treating waste sludge at 400 °C for 2 h. N2 adsorption, SEM, XRD, XRF, and FTIR techniques characterized the structural and physical properties of the catalyst. The BET-specific surface area of the catalyst reduced after AMX removal from 4.4 m2/g to 3.6 m2/g. To determine the optimal removal conditions, the parameters of the design of experiments were pH (5-9), contaminant concentration (5-100 mg/L), catalyst dosage (0.5-6 g/L), and concentration of hydrogen peroxide (10-100 mM). The maximum removal of AMX (98%) was obtained in the catalyst/hydrogen peroxide/ultrasound system at pH 5, catalyst dose of 4.5 g/L, H2O2 concentration of 50 mM, AMX concentration of 5 mg/L, and contact time of 60 min. The kinetics of removal of AMX from urine (k = 0.026 1/min), hospital wastewater (k = 0.021 1/min), and distilled water (k = 0.067 1/min) followed a first-order kinetic model (R2>0.91). The catalyst was reused up to 8 times and the AMX removal decreased to 45% in the last use. The byproducts and reaction pathway of AMX degradation were also investigated. The results clearly show that to achieve high pollutant removal rate the H2O2/ultrasound and catalyst/ultrasound synergy plays a key role.
Collapse
Affiliation(s)
- Fatemeh Damiri
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedenayat Hashemi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Mehdi Vosoughi
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soleyman Sahebi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P., 6079, Succ. CV Montréal, H3C 3A7, Québec, Canada.
| |
Collapse
|
13
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Gholami P, Khataee A, Soltani RDC, Dinpazhoh L, Bhatnagar A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121070. [PMID: 31470301 DOI: 10.1016/j.jhazmat.2019.121070] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 05/27/2023]
Abstract
The aim of the present study was to investigate the photocatalytic performance of biochar (BC)-incorporated Zn-Co-layered double hydroxide (LDH) nanostructures in gemifloxacin (GMF) degradation as a model pharmaceutical pollutant. The as-prepared Zn-Co-LDH@BC showed high photocatalytic efficiency due to the enhanced separation of photo-generated charge carriers using cobalt hydroxide as well as inhibiting the agglomeration of LDH nanostructures by incorporation of BC. According to the results, 92.7% of GMF was degraded through photocatalysis in the presence of Zn-Co-LDH catalyst. The photocatalytic performance of BC-incorporated Zn-Co-LDH was highly dependent on the solute concentration and photocatalyst dosage. The addition of ethanol caused more inhibiting effect than that of benzoquinone (BQ), indicating the major role of •OH in decomposition of GMF compared to the negligible role of O2•-. A greater enhancement in the photocatalytic degradation of GMF was obtained when the photoreactor containing Zn-Co-LDH@BC nanostructures was oxygenated. Less than 10% drop in the removal efficiency of GMF was observed within five successive operational runs. The results of chemical oxygen demand (COD) analysis indicated the COD removal efficiency of about 80% within 200 min, indicating the acceptable mineralization of GMF. The reaction pathways were also proposed for the photocatalytic conversion of GMF under UV light irradiation.
Collapse
Affiliation(s)
- Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Health Promotion Research Center, Iran University of Medical Sciences, 1449614535, Tehran, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345, Arak, Iran
| | - Laleh Dinpazhoh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
15
|
Soltani RDC, Miraftabi Z, Mahmoudi M, Jorfi S, Boczkaj G, Khataee A. Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound. ULTRASONICS SONOCHEMISTRY 2019; 58:104669. [PMID: 31450319 DOI: 10.1016/j.ultsonch.2019.104669] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Powdered stone waste (PSW) obtained from a stone cutting industrial unit was applied as support for the immobilization of nano-sized ZnO to be utilized as an effective catalyst for the catalytic conversion of acetaminophen (ACE) under ultrasonication. The incorporation of ZnO nanostructures into PSW structure enhanced the specific surface area and pore volume of the as-prepared nanocompound. The change in the value of zero point of charge (pHzpc) of the PSW after being covered also demonstrated the good immobilization and distribution of ZnO nanostructures on the surface of PSW. The sonocatalysis of ACE over ZnO/PSW followed pseudo-first order kinetic (reaction rate of 2.27 × 10-2 1/min). The highest degradation efficiency of 98.1% was attained when the ZnO/PSW-contained sono-reactor was irradiated by UVC light. The presence of t-butanol led to the lowest degradation efficiency (57.7%), indicating that the sonocatalytic conversion of ACE was hydroxyl radical (OH)-dependent. Although the mineralization efficiency of ACE by the process was not excellent, bio-toxicity assessment on the effluent revealed decreasing the inhibition percent from 50.8 to 16.7% within reaction time of 240 min.
Collapse
Affiliation(s)
| | - Zahra Miraftabi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansoureh Mahmoudi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Alireza Khataee
- Nanomaterials Based Water Treatment Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
16
|
Daneshvar H, Seyed Dorraji MS, Amani-Ghadim AR, Rasoulifard MH. Enhanced sonocatalytic performance of ZnTi nano-layered double hydroxide by substitution of Cu (II) cations. ULTRASONICS SONOCHEMISTRY 2019; 58:104632. [PMID: 31450339 DOI: 10.1016/j.ultsonch.2019.104632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 05/12/2023]
Abstract
In this research, a series of CuZnTi-LDHs with different Cu2+/Zn2+ molar ratio were synthesized by co-precipitation method with the purpose of improving the sonocatalytic performance of ZnTi-LDH. All the LDH samples were synthesized by a facile co-precipitation process. The as-prepared LDHs were characterized by Powder X-ray diffraction (XRD), Field emission-scanning electron microscopy (FESEM), Transition electron microscopy (TEM), Brunauer-Emmelt-Teller (BET) analysis, and UV-visible diffuse reflectance spectroscopy (DRS) analysis. The results showed that Cu2+ substitution can significantly enhance the sonocatalytic properties of ZnTi-LDH. The Methylene blue degradation percentage over ZnTi-LDH reached 30% in 90 min, whilst this percentage reaches 71% over CuZnTi-LDH (1:1). The role of the Cu2+ incorporation on the observed enhancement in sonocatalytic performance was revealed by investigating the effect of radical scavengers on degradation efficiency and DRS spectra of ZnTi-LDH and CuZnTi-LDH (1:1). Benzoquinone (BQ), ammonium oxalate and tert-Bu lead to 22.5%, 53.5% and 74.6% decrease in degradation percentage by CuZnTi-LDH (1:1). However, the degradation efficiency showed 16.6%, 3.3% and 63.3% reduction in the presence of BQ, ammonium oxalate and tert-Bu respectively, in dye degradation by ZnTi-LDH. DRS spectra demonstrated that the band gap of the LDH decreases by Cu2+ substitution. The effect of operational parameters on sonodegradation was investigated as well. The kinetics of sonodegradation reaction obeyed the first order reaction kinetics with R2 of 0.95.
Collapse
Affiliation(s)
- H Daneshvar
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M S Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - A R Amani-Ghadim
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, P.O. box 83714-161, Tabriz, Iran
| | - M H Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
17
|
Gholami P, Khataee A, Soltani RDC, Bhatnagar A. A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications. ULTRASONICS SONOCHEMISTRY 2019; 58:104681. [PMID: 31450341 DOI: 10.1016/j.ultsonch.2019.104681] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Contamination of water resources by refractory organic pollutants is of great environmental and health concern because these compounds are not degraded in the conventional wastewater treatment plants. In recent years, sonocatalytic treatment has been considered as a promising advanced oxidation technique for the acceptable degradation and mineralization of the recalcitrant organic compounds. For this purpose, various sonocatalysts have been utilized in order to accelerate the degradation process. The present review paper provides a summary of published studies on the sonocatalytic degradation of various organic pollutants based on the application of carbon-based catalysts, including carbon nanotubes (CNTs), graphene (GR), graphene oxide (GO), reduced graphene oxide (rGO), activated carbon (AC), biochar (BC), graphitic carbon nitride (g-C3N4), carbon doped materials, buckminsterfullerene (C60) and mesoporous carbon. The mechanism of sonocatalytic degradation of different organic compounds by the carbon-based sonocatalysts has been well assessed based on the literature. Moreover, the details of experimental conditions such as sonocatalyst dosage, solute concentration, ultrasound power, applied frequency, initial pH and reaction time related to each study have also been discussed in this review. Finally, concluding remarks as well as future challenges in this research field regarding new areas of study are also discussed and recommended.
Collapse
Affiliation(s)
- Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345 Arak, Iran
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
18
|
Ghasemi M, Khataee A, Gholami P, Cheshmeh Soltani RD. Template-free microspheres decorated with Cu-Fe-NLDH for catalytic removal of gentamicin in heterogeneous electro-Fenton process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109236. [PMID: 31306926 DOI: 10.1016/j.jenvman.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Nano-layered double hydroxide (NLDH) decorated with Fe and Cu was applied as a novel heterogeneous catalyst for catalytic degradation of gentamicin by the electro-Fenton (EF) process. The EF process was equipped with graphite plate under aeration to electrochemically generate hydrogen peroxide in the solution. The characterization analyses confirmed the suitable structure of as-synthesized Cu-Fe-NLDH to be acted as catalyst for treating the target pollutant. The comparative study showed the highest removal efficiency of 91.3% when the Cu-Fe-NLDH-equipped EF process was applied in comparison with the Fenton (50%) and the electro-oxidation alone (25.6%). The acidic pHs favored the degradation of gentamicin. Increasing the current resulted in the enhanced degradation of gentamicin, while the excessive electrolyte concentration (0.1 mol/L) and catalyst dosage (1.5 g/L) led to the tangible drop in the reactor performance. At a specified reaction time, the injection of O3 gas enhanced the efficiency of the Cu-Fe-NLDH-equipped EF process. The presence of ethanol led to more suppressing effect than benzoquinone, indicating the dominant role of OH radical in the degradation of gentamicin compared with other free radical species such as O2- radical. Only 10% drop in the degradation efficiency of gentamicin was observed within 10 operational runs. The mineralization efficiency of about 77% was achieved after 300 min in terms of chemical oxygen demand (COD) removal. The intermediate byproducts generated during the destructive removal of gentamicin were also identified.
Collapse
Affiliation(s)
- Masoumeh Ghasemi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345, Arak, Iran
| |
Collapse
|
19
|
Mechanical production and sonocatalytic application of Cu2S nanoparticles for degradation of isopropylxanthic acid: Kinetic modeling via white and black box methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Soltani RDC, Mashayekhi M, Naderi M, Boczkaj G, Jorfi S, Safari M. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst. ULTRASONICS SONOCHEMISTRY 2019; 55:117-124. [PMID: 31084785 DOI: 10.1016/j.ultsonch.2019.03.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/24/2019] [Accepted: 03/09/2019] [Indexed: 05/12/2023]
Abstract
The aim of the present investigation was the combination of ZnO nanostructures with nano-cellulose (NC) for the efficient degradation of tetracycline (TC) antibiotic under ultrasonic irradiation. The removal efficiency of 12.8% was obtained by the sole use of ultrasound (US), while the removal efficiency increased up to 70% by the US/ZnO treatment process. Due to the integration of ZnO nanostructures with NC, the removal efficiency of 87.6% was obtained within 45 min. The removal efficiency substantially decreased in the presence of tert-butyl alcohol (more than 25% reduction), indicating that radOH-mediation oxidation is responsible for the degradation of TC molecules. Peroxymonosulfate (PMS) led to the most enhancing effect on the removal of TC among percarbonate, persulfate and periodate ions. The addition of PMS caused the degradation efficiency of 96.4% within the short contact time of 15 min. The bio-toxicity examination on the basis of inhibition test conducted on activated sludge revealed diminishing the oxygen consumption inhibition percent [IOUR (%)] from 33.6 to 22.1% during the US/ZnO/NC process. Consequently, the utilization of the US/ZnO/NC process can convert TC molecules to less toxic compounds. However, longer reaction time is required for complete conversion into non-toxic substances.
Collapse
Affiliation(s)
| | - Masumeh Mashayekhi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Masumeh Naderi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
21
|
Wang J, Wang Z, Vieira CLZ, Wolfson JM, Pingtian G, Huang S. Review on the treatment of organic pollutants in water by ultrasonic technology. ULTRASONICS SONOCHEMISTRY 2019; 55:273-278. [PMID: 30712850 DOI: 10.1016/j.ultsonch.2019.01.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/12/2023]
Abstract
The application of ultrasonic technology in the treatment of organic pollutants in water has attracted more and more attention in recent years. Compared with conventional treatment, ultrasonic treatment is more efficient and time saving. Ultrasonic technology is effective for the degradation of many refractory organic pollutants. In this paper, the principle, influencing factors and various methods of ultrasonic degradation of organic pollutants are studied in view of ultrasonic treatment alone, ultrasound treatment methods combined with biocatalysts, chemical oxidation and adsorption techniques, respectively. In addition, the problems existing in the treatment of organic pollutants in water by ultrasonic technology are analyzed and the development direction is put forward.
Collapse
Affiliation(s)
- Jing Wang
- National University of Singapore, Singapore
| | - Zhenjun Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, USA
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, USA
| | | | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
22
|
Mirzaee R, Darvishi Cheshmeh Soltani R, Khataee A, Boczkaj G. Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Mahmoud HR, El-Molla SA, Naghmash MA. Novel mesoporous MnO 2/SnO 2 nanomaterials synthesized by ultrasonic-assisted co-precipitation method and their application in the catalytic decomposition of hydrogen peroxide. ULTRASONICS 2019; 95:95-103. [PMID: 30903814 DOI: 10.1016/j.ultras.2019.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Novel mesoporous MnO2/SnO2 catalysts were successfully synthesized via traditional and ultrasonic co-precipitation methods. Moreover, their catalytic efficiencies were evaluated in decomposition of hydrogen peroxide (H2O2). Interestingly, it was found that the mixing of MnO2 with SnO2 catalyst led to a significant improvement in their catalytic efficiencies compared with single oxides catalysts. However, the influence of ultrasonic power and irradiation time on MnO2/SnO2 nanomaterials were compared to get optimum synthetic condition. Subsequently, the catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption analysis and high-resolution transmission electron microscopy (HR-TEM). Results represented that the effect of ultrasonic power and irradiation time on MnO2/SnO2 catalysts exerted a great influence on the BET surface area and average particle diameter. Furthermore, the results showed that the best catalytic efficiency was obtained for the mesoporous MnO2/SnO2 catalyst which is sonicated at power of 60% for 30 min as optimum conditions. Finally, the outcomes appeared that the catalysts synthesized by ultrasonic co-precipitation method were more efficient than those synthesized by traditional co-precipitation in catalyzing H2O2 decomposition.
Collapse
Affiliation(s)
- Hala R Mahmoud
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt.
| | - Sahar A El-Molla
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt
| | - Mona A Naghmash
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt
| |
Collapse
|
24
|
Bampos G, Frontistis Z. Sonocatalytic degradation of butylparaben in aqueous phase over Pd/C nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11905-11919. [PMID: 30820921 DOI: 10.1007/s11356-019-04604-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In the present work, the sonocatalytic degradation of butylparaben was investigated using Pd immobilized on carbon black as the sonocatalyst. The presence of 25 mg/L 10Pd/C significantly increased the removal rate of butylparaben and the observed kinetic constant increased from 0.0126 to 0.071 min-1, while the synergy index between sonolysis and adsorption was 70.7%. The BP degradation followed pseudo-first-order kinetics with the apparent kinetic constant decreased from 0.071 to 0.030 min-1 when the initial concentration of butylparaben increased from 0.5 to 2 mg/L. The process was being favored slightly under alkaline conditions. The presence of organic matter (20 mg/L humic acid) reduced the apparent kinetic constant more than two times. The addition of chlorides up to 250 mg/L did not significantly reduce the rate of reaction, while the presence of 250 mg/L bicarbonates reduced the observed kinetic constant from 0.071 to 0.0472 min-1. The prepared catalyst retains the efficiency after five subsequent experiments since the apparent kinetic constant was only slightly decreased from 0.071 to 0.059 min-1.
Collapse
Affiliation(s)
- Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Zacharias Frontistis
- Department of Environmental Engineering, University of Western Macedonia, GR-50100, Kozani, Greece.
| |
Collapse
|
25
|
Li S, Zhang M, Ma X, Qiao J, Zhang H, Wang J, Song Y. Preparation of ortho-symmetric double (OSD) Z-scheme SnO2\CdSe/Bi2O3 sonocatalyst by ultrasonic-assisted isoelectric point method for effective degradation of organic pollutants. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Sepyani F, Darvishi Cheshmeh Soltani R, Jorfi S, Godini H, Safari M. Implementation of continuously electro-generated Fe 3O 4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV 254 and ultrasound intensification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:315-326. [PMID: 30056351 DOI: 10.1016/j.jenvman.2018.07.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
In the present investigation, the treatment of amoxicillin (AMX)-polluted water by the activated persulfate (PS) was considered. As a novel research, continuously electro-generated magnetite (Fe3O4) nanoparticles (CEMNPs) were utilized as the activator of PS in an electrochemical medium. The PS/CEMNPs displayed a remarkable enhancement in the decomposition of AMX molecules up to 72.6% compared with lonely PS (24.8%) and CEMNPs (13.4%). On the basis of pseudo-first order reaction rate constants, the synergy percent of about 70% was achieved due to the combination of PS with CEMNPs. The adverse influence of free radical-scavenging compounds on the efficiency of the PS/CEMNPs process was in the following order: carbonate < chloride < tert-butyl alcohol < ethanol. Overall, these results proved the main role of free radical species in degrading AMX. The implementation of ultrasound (US) enhanced the performance of the PS/CEMNPs process. Nevertheless, the highest degradation efficiency of about 94% was achieved when UV254 lamp was joined the PS/CEMNPs system. Under UV254 and US irradiation, the results showed significant potential of the PS/CEMNPs process for degrading AMX antibiotic and generating low toxic effluent based on the activated sludge inhibition test. However, more time is needed to achieve the acceptable mineralization.
Collapse
Affiliation(s)
- Fatemeh Sepyani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | | | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hatam Godini
- Department of Environmental Health Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|