1
|
Xie X, Xu J, Ding D, Lin J, Han K, Wang C, Wang F, Zhao J, Wang L. Janus Membranes Patch Achieves High-Quality Tendon Repair: Inhibiting Exogenous Healing and Promoting Endogenous Healing. NANO LETTERS 2024; 24:4300-4309. [PMID: 38534038 DOI: 10.1021/acs.nanolett.4c00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The imbalance between endogenous and exogenous healing is the fundamental reason for the poor tendon healing. In this study, a Janus patch was developed to promote endogenous healing and inhibit exogenous healing, leading to improved tendon repair. The upper layer of the patch is a poly(dl-lactide-co-glycolide)/polycaprolactone (PLGA/PCL) nanomembrane (PMCP-NM) modified with poly(2-methylacryloxyethyl phosphocholine) (PMPC), which created a lubricated and antifouling surface, preventing cell invasion and mechanical activation. The lower layer is a PLGA/PCL fiber membrane loaded with fibrin (Fb) (Fb-NM), serving as a temporary chemotactic scaffold to regulate the regenerative microenvironment. In vitro, the Janus patch effectively reduced 92.41% cell adhesion and 79.89% motion friction. In vivo, the patch inhibited tendon adhesion through the TGF-β/Smad signaling pathway and promoted tendon maturation. This Janus patch is expected to provide a practical basis and theoretical guidance for high-quality soft tissue repair.
Collapse
Affiliation(s)
- Xiaojing Xie
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danzhi Ding
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chaorong Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Lee YB, Lim S, Lee Y, Park CH, Lee HJ. Green Chemistry for Crosslinking Biopolymers: Recent Advances in Riboflavin-Mediated Photochemistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1218. [PMID: 36770225 PMCID: PMC9920339 DOI: 10.3390/ma16031218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Riboflavin (RF), which is also known as vitamin B2, is a water-soluble vitamin. RF is a nontoxic and biocompatible natural substance. It absorbs light (at wavelengths of 380 and 450 nm) in the presence of oxygen to form reactive singlet oxygen (1O2). The generated singlet oxygen acts as a photoinitiator to induce the oxidation of biomolecules, such as amino acids, proteins, and nucleotides, or to initiate chemical reactions, such as the thiol-ene reaction and crosslinking of tyramine and furfuryl groups. In this review, we focus on the chemical mechanism and utilization of the photochemistry of RF, such as protein crosslinking and hydrogel formation. Currently, the crosslinking method using RF as a photoinitiator is actively employed in ophthalmic clinics. However, a significant broadening is expected in its range of applications, such as in tissue engineering and drug delivery.
Collapse
|
3
|
Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. MICROMACHINES 2022; 13:mi13071038. [PMID: 35888855 PMCID: PMC9318225 DOI: 10.3390/mi13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
An osteochondral defect is a common and frequent disease in orthopedics and treatment effects are not good, which can be harmful to patients. Hydrogels have been applied in the repair of cartilage defects. Many studies have reported that hydrogels can effectively repair osteochondral defects through loaded cells or non-loaded cells. As a new type of hydrogel, photo-crosslinked hydrogel has been widely applied in more and more fields. Meanwhile, 3D bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. Although photo-crosslinkable hydrogel-based 3D bioprinting has some advantages for repairing bone cartilage defects, it also has some disadvantages. Our aim of this paper is to review the current status and prospect of photo-crosslinkable hydrogel-based 3D bioprinting for repairing osteochondral defects.
Collapse
|
4
|
Huang YC, Liu ZH, Kuo CY, Chen JP. Photo-Crosslinked Hyaluronic Acid/Carboxymethyl Cellulose Composite Hydrogel as a Dural Substitute to Prevent Post-Surgical Adhesion. Int J Mol Sci 2022; 23:6177. [PMID: 35682853 PMCID: PMC9181059 DOI: 10.3390/ijms23116177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
A dural substitute is frequently used to repair dura mater during neurosurgical procedures. Although autologous or commercially available dural substitutes matched most of the requirements; difficulties during dural repair, including insufficient space for suturing, insufficient mechanical strength, easy tear and cerebrospinal fluid leakage, represent major challenges. To meet this need, a photo-crosslinked hydrogel was developed as a dural substitute/anti-adhesion barrier in this study, which can show sol-to-gel phase transition in situ upon short-time exposure to visible light. For this purpose, hyaluronic acid (HA) and carboxymethyl cellulose (CMC), materials used in abdominal surgery for anti-adhesion purposes, were reacted separately with glycidyl methacrylate to form hyaluronic acid methacrylate (HAMA) and carboxymethyl cellulose methacrylate (CMCMA). The HA/CMC (HC) hydrogels with different HA compositions could be prepared by photo-crosslinking HAMA and CMCMA with a 400 nm light source using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photo-initiator. From studies of physico-chemical and biological properties of HC composite hydrogels, they are bio-compatible, bio-degradable and mechanically robust, to be suitable as a dural substitute. By drastically reducing attachment and penetration of adhesion-forming fibroblasts in vitro, the HC hydrogel can also act as an anti-adhesion barrier to prevent adhesion formation after dural repair. From in vivo study in rabbits, the HC hydrogel can repair dural defects as well as protect the dura from post-operative adhesion, endorsing the possible application of this hydrogel as a novel dural substitute.
Collapse
Affiliation(s)
- Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
5
|
Kong MS, Koh WG, Lee HJ. Controlled Release of Epidermal Growth Factor from Furfuryl-Gelatin Hydrogel Using in Situ Visible Light-Induced Crosslinking and Its Effects on Fibroblasts Proliferation and Migration. Gels 2022; 8:gels8040214. [PMID: 35448115 PMCID: PMC9032874 DOI: 10.3390/gels8040214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hydrogels are widely used in tissue engineering as materials that regulate cell proliferation, migration, and differentiation. They also act as promising biomaterials that can provide a variety of stimuli by influencing the surrounding microenvironment, which can be achieved by modulating their mechanical properties, thereby aiding soluble factor delivery. Here, we developed a gelatin-based injectable hydrogel that has controllable mechanical properties and demonstrates sustained drug release without the need for invasive surgery. Gelatin was modified with furfuryl groups, and riboflavin phosphate was used as a photoinitiator to crosslink the hydrogel using visible light. A hydrogel–with a storage modulus in the range of 0.2–15 kPa was formed by maintaining the concentration of furfuryl-gelatin within 10–30% w/v. Consequently, their mechanical properties can be tailored for their applications. The furfuryl-gelatin hydrogel was loaded with maleimide-modified epidermal growth factor (EGF) as a model drug to achieve a controlled-release system. The sustained release of maleimide-EGF due to gelatin hydrogel matrix degradation was observed. Cell proliferation and scratch assays were performed to verify its effect on fibroblasts. When EGF was physically entrapped in the hydrogel matrix, the released EGF considerably affected cell proliferation and scratch closure of fibroblasts at the beginning of the culture. By contrast, maleimide-EGF was released sustainably and steadily and affected cell proliferation and scratch closure after the initial stage. We demonstrated that the release of soluble factors could be controlled by modulating the mechanical properties. Thus, the injectable hydrogel formed by in situ visible light-induced crosslinking could be a promising biomaterial for tissue engineering and biomedical therapeutics.
Collapse
Affiliation(s)
- Min Sun Kong
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea;
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (W.-G.K.); (H.J.L.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea;
- Correspondence: (W.-G.K.); (H.J.L.)
| |
Collapse
|
6
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Kang Y, Kim JH, Kim SY, Koh WG, Lee HJ. Blue Light-Activated Riboflavin Phosphate Promotes Collagen Crosslinking to Modify the Properties of Connective Tissues. MATERIALS 2021; 14:ma14195788. [PMID: 34640185 PMCID: PMC8510499 DOI: 10.3390/ma14195788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Reduced amounts of collagen and fragmented collagen fibers are characteristics of aging skin. Recently, user-friendly, at-home personal aesthetic devices using light-emitting diode (LED) light have been used for cost-effective and safe skin improvement. However, to dramatically improve the skin via collagen repair, we need to develop an LED-responsive photosensitizer. Corneal collagen crosslinking uses ultraviolet light to activate riboflavin phosphate (RFP) and is used in ophthalmology. RFP is a biocompatible photosensitizer derived from vitamin B2. This study aimed to prove that RFP combined with blue light (BL) can increase collagen crosslinking density, improving its mechanical properties in skin tissue and enhancing skin elasticity. We confirmed the RFP-induced photo-crosslinking in pure collagen by studying changes in its dynamic modulus and matrix morphology using collagen hydrogels. We also measured the changes in the mechanical properties after applying photo-crosslinking on porcine skin. The Young’s modulus (1.07 ± 0.12 MPa) and tensile strength (11.04 ± 1.06 MPa) of the porcine skin after photo-crosslinking were 2.8 and 3.5 times better compared to those of normal porcine skin, respectively. Thus, photo-crosslinking through RFP and BL irradiation can be potentially used for skin improvement using aesthetic LED devices.
Collapse
Affiliation(s)
- Yeyoung Kang
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Jae Hak Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Seo Young Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (W.-G.K.); (H.J.L.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
- Correspondence: (W.-G.K.); (H.J.L.)
| |
Collapse
|
8
|
Cai Z, Tang Y, Wei Y, Wang P, Zhang H. Physically Cross-Linked Hyaluronan-Based Ultrasoft Cryogel Prepared by Freeze-Thaw Technique as a Barrier for Prevention of Postoperative Adhesions. Biomacromolecules 2021; 22:4967-4979. [PMID: 34499463 DOI: 10.1021/acs.biomac.1c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postsurgical peritoneal adhesions are a common and serious postoperative complication after various peritoneal surgeries, such as pelvic and abdominal surgery. Various studies have shown that peritoneal adhesions can be minimized or prevented by physical anti-adhesion barriers, including membranes, knits, and hydrogels. Hydrogels have attracted great attention in preventing peritoneal adhesions because the dimensional architecture of hydrogels is similar to that of the native extracellular matrix. However, chemical cross-linkers had to be used in the preparation of chemical hydrogels, which may have problems in cytotoxicity or unwanted side effects. This fact prompts us to create alternative cross-linking methods for the development of biocompatible hydrogels as physical barriers. Herein, we report a physically cross-linked flexible hyaluronan (HA) cryogel prepared via a freeze-thaw technique as a novel anti-adhesion biomaterial for completely preventing postsurgical peritoneal adhesions. In vitro studies demonstrated that this physically cross-linked HA cryogel exhibited excellent biocompatibility, the inherently desirable biocompatibility and functionality of HA being integrally retained as much as possible. Intriguingly, the rheological properties and appropriate biodegradability of the cryogels were readily tailored and tunable by way of the gelation process. In vivo assessments suggested that the cryogel, as a physical barrier, satisfactorily prevented fibroblast penetration and attachment between the injured tissues and nearby normal organs. Furthermore, the molecular mechanism studies revealed that the HA cryogel could prevent peritoneal adhesion by inhibiting inflammatory response and modulation of the fibrinolytic system. Our results show that HA ultrasoft cryogel is a promising clinical candidate for prolonged adhesion prevention.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanmei Tang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P. R. China.,National Center for Stomatology, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, P. R. China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021; 124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.
Collapse
|
10
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Park H, Baek S, Kang H, Lee D. Biomaterials to Prevent Post-Operative Adhesion. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3056. [PMID: 32650529 PMCID: PMC7412384 DOI: 10.3390/ma13143056] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Surgery is performed to treat various diseases. During the process, the surgical site is healed through self-healing after surgery. Post-operative or tissue adhesion caused by unnecessary contact with the surgical site occurs during the normal healing process. In addition, it has been frequently found in patients who have undergone surgery, and severe adhesion can cause chronic pain and various complications. Therefore, anti-adhesion barriers have been developed using multiple biomaterials to prevent post-operative adhesion. Typically, anti-adhesion barriers are manufactured and sold in numerous forms, such as gels, solutions, and films, but there are no products that can completely prevent post-operative adhesion. These products are generally applied over the surgical site to physically block adhesion to other sites (organs). Many studies have recently been conducted to increase the anti-adhesion effects through various strategies. This article reviews recent research trends in anti-adhesion barriers.
Collapse
Affiliation(s)
- Heekyung Park
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| | - Seungho Baek
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul 06973, Korea
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| |
Collapse
|
12
|
Park DY, Yun HW, Lim S, Truong MD, Yin XY, Park J, Kim BK, Shin DI, Li XG, Chung JY, Kim MS, Min BH. Cross-linked cartilage acellular matrix film decreases postsurgical peritendinous adhesions. Artif Organs 2019; 44:E136-E149. [PMID: 31660625 DOI: 10.1111/aor.13591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Cartilage extracellular matrix contains antiadhesive and antiangiogenic molecules such as chondromodulin-1, thrombospondin-1, and endostatin. We have aimed to develop a cross-linked cartilage acellular matrix (CAM) barrier for peritendinous adhesion prevention. CAM film was fabricated using decellularized porcine cartilage tissue powder and chemical cross-linking. Biochemical analysis of the film showed retention of collagen and glycosaminoglycans after the fabrication process. Physical characterization of the film showed denser collagen microstructure, increased water contact angle, and higher tensile strength after cross-linking. The degradation time in vivo was 14 d after cross-linking. The film extract and film surface showed similar cell proliferation, while inhibiting cell migration and cell adhesion compared to standard media and culture plate, respectively. Application of the film after repair resulted in similar tendon healing and significantly less peritendinous adhesions in a rabbit Achilles tendon injury model compared to repair only group, demonstrated by histology, ultrasonography, and biomechanical testing. In conclusion, the current study developed a CAM film having biological properties of antiadhesion, together with biomechanical properties and degradation profile suitable for prevention of peritendinous adhesions.
Collapse
Affiliation(s)
- Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sumin Lim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Jinho Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Byeong Kook Kim
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Xue Guang Li
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
13
|
|