1
|
Haridas A, Sharma S, Naskar K, Mondal T. Cross-Talk Signal Free Recyclable Thermoplastic Polyurethane/Graphene-Based Strain and Pressure Sensor for Monitoring Human Motions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17279-17292. [PMID: 36944054 DOI: 10.1021/acsami.3c01364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing a sensor that can read out cross-talk free signals while determining various active physiological parameters is demanding in the field of point-of-care applications. While there are a few examples of non-flexible sensors available, the management of electronic waste generated from such sensors is critical. Most of such available sensors are rigid in form factor and hence limit their usability in healthcare monitoring due to their poor conformity to human skin. Combining these facets, studies on the development of a recyclable cross-talk free flexible sensor for monitoring human motions and active parameters are far and few. In this work, we report on the development of a recyclable flexible sensor that can provide accurate data for detecting small changes in strain as well as pressure. The developed sensor could decipher the signals individually responsible due to strain as well as pressure. Hence, it can deliver a cross-talk free output. Thermoplastic polyurethane and graphene were selected as the model system. The thermoplastic polyurethane/graphene sensor exhibited a tensile strain sensitivity of GF ≃ 3.375 for 0-100% strain and 10.551 for 100-150% strain and a pressure sensitivity of ∼-0.25 kPa-1. We demonstrate the applicability of the strain sensor for monitoring a variety of human motions ranging from a very small strain of eye blinking to a large strain of elbow bending with unambiguous peaks and a very fast response and recovery time of 165 ms. The signals received are mostly electrical hysteresis free. To confirm the recyclability, the developed sensor was recycled up to three times. Marginal decrement in the sensitivity was noted with recycling without compromising the sensing capabilities. These findings promise to open up a new avenue for developing flexible sensors with lesser carbon footprints.
Collapse
Affiliation(s)
- Ajay Haridas
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Simran Sharma
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Kinsuk Naskar
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Kim DH, Lee HJ, Park D, Yim JH, Choi HK. Fabrication of a nanoscale 2D PEDOT pattern via the combination of colloidal lithography and vapor phase polymerization for application in transparent, highly sensitive bending sensors. NANOSCALE 2023; 15:4620-4627. [PMID: 36776102 DOI: 10.1039/d2nr07104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in flexible, stretchable, and wearable electronics have necessitated the development of more diverse and complex device structures; high-resolution patterning strategies for conducting polymers are therefore urgently required to enable the fabrication of these devices. In this study, we report a nanoscale patterning strategy for conductive polymer films that utilizes a combination of vapor phase polymerization (VPP) and colloidal lithography. Here, hemispherical non-close-packed colloidal crystals are used as an effective lithographic mask for patterning oxidants on a substrate; subsequently, two-dimensional honeycomb-structured porous poly(3,4-ethylenedioxythiophene) (PEDOT) films are fabricated via VPP using the prepatterned oxidant. The resulting films closely resemble the morphology of the preceding oxidant structure; furthermore, the film porosity can be altered by adjusting the polymerization time. These patterned PEDOT films exhibit high transparency owing to the presence of voids, and high electrical sensitivity to bending stresses, which were concentrated in the narrow-patterned area. As the described fabrication methods are facile and reliable, this approach therefore provides an effective route for the fabrication of various conducting polymer frameworks in the micro- to nanoscale range.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Ho Joon Lee
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Daedong Park
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Jin-Heong Yim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Hong Kyoon Choi
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| |
Collapse
|
3
|
Ahn J, Lee Y, Kim J, Yoon S, Jeong YC, Cho KY. Thiol-ene UV-curable sponge electrolyte for low-voltage color changing wearable tactile device. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
5
|
Cui X, Zhang C, Araby S, Cai R, Kalimuldina G, Yang Z, Meng Q. Multifunctional, flexible and mechanically resilient porous polyurea/graphene composite film. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
A wearable strain sensor based on polyurethane nanofiber membrane with silver nanowires/polyaniline electrically conductive dual-network. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Persons AK, Ball JE, Freeman C, Macias DM, Simpson CL, Smith BK, Burch V. RF. Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4070. [PMID: 34361264 PMCID: PMC8347841 DOI: 10.3390/ma14154070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from "bench to bedside", fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.
Collapse
Affiliation(s)
- Andrea Karen Persons
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
| | - John E. Ball
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Electrical and Computer Engineering, Mississippi State University, 406 Hardy Road, Starkville, MS 39762, USA
| | - Charles Freeman
- School of Human Sciences, Mississippi State University, 255 Tracy Drive, Starkville, MS 39762, USA;
| | - David M. Macias
- Department of Kinesiology, Mississippi State University, P.O. Box 6186, Starkville, MS 39762, USA;
- Columbus Orthopaedic Clinic, 670 Leigh Drive, Columbus, MS 39705, USA
| | - Chartrisa LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
| | - Brian K. Smith
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| | - Reuben F. Burch V.
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| |
Collapse
|
8
|
Fernandez FDM, Khadka R, Yim JH. A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Maity S, Datta S, Mishra M, Banerjee S, Das S, Chatterjee K. Poly(3,4 ethylenedioxythiophene)‐tosylate—Its synthesis, properties and various applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shilpa Maity
- Department of Physics Jadavpur University Kolkata India
| | - Salini Datta
- Department of Physics Techno India University Kolkata India
| | - Megha Mishra
- Department of Physics Techno India University Kolkata India
| | | | - Sukhen Das
- Department of Physics Jadavpur University Kolkata India
| | | |
Collapse
|
10
|
Losaria PM, Yim J. Enhancement of Strain‐Sensing Performance through Gas Phase Incorporation of Siloxane into Thermoplastic Polyurethane‐Conducting Polymer Composite. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pauline May Losaria
- Division of Advanced Materials EngineeringKongju National University Budaedong 275, Seobuk‐gu Cheonan‐si Chungnam 31080 South Korea
| | - Jin‐Heong Yim
- Division of Advanced Materials EngineeringKongju National University Budaedong 275, Seobuk‐gu Cheonan‐si Chungnam 31080 South Korea
| |
Collapse
|
11
|
Fernandez FDM, Khadka R, Yim JH. Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor. RSC Adv 2020; 10:22533-22541. [PMID: 35514553 PMCID: PMC9054621 DOI: 10.1039/d0ra03592k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
Herein, in situ vapor-phase polymerization (VPP) of pyrrole on an oxidant-impregnated styrene–ethylene–butylene–styrene (SEBS) matrix comprising a three-dimensional sugar particle assembly was used to produce a soft and porous polypyrrole (PPy)–SEBS hybrid scaffold. Characterization of the PPy–SEBS hybrid scaffold using field-effect scanning electron microscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and micro-computerized tomography confirmed the successful uniform and homogenous polymerization of PPy onto the SEBS matrix with a porous morphology. The performance of the hybrid scaffold of different pore sizes as an ammonia sensor under different temperature conditions was evaluated in terms of resistance change. The results showed that the PPy–SEBS scaffolds of larger pore size had higher resistance changes under lower temperature conditions when ammonia (NH3) gas was introduced compared to those observed for smaller pore sizes under higher temperature conditions. These scaffolds showed excellent repeatability and reversibility in detecting NH3 gas with fast response and recovery times of 30 s and 10–15 min, respectively. Moreover, the larger pore size scaffolds polymerized for a longer time possessed a remarkable ability to be applied as strain sensors. These kinds of novel, soft, and porous conductive polymer composite materials produced by VPP will have huge practical applications in monitoring other toxic and non-toxic gases. Fabrication of a hybrid scaffold from an oxidant-impregnated styrene–ethylene–butylene–styrene (SEBS) matrix comprising a three-dimensional sugar particle assembly by vapor phase polymerization (VPP).![]()
Collapse
Affiliation(s)
- Frances Danielle M Fernandez
- Division of Advanced Materials Engineering, Kongju National University Budaedong 275, Seobuk-gu Cheonan-si Chungnam 31080 South Korea +82-41-521-9397
| | - Roshan Khadka
- The New Zealand Institute for Plant and Food Research Limited Private Bag 92169 Auckland 1142 New Zealand +64 9 925 7001 +64 9 925 7000
| | - Jin-Heong Yim
- Division of Advanced Materials Engineering, Kongju National University Budaedong 275, Seobuk-gu Cheonan-si Chungnam 31080 South Korea +82-41-521-9397
| |
Collapse
|
12
|
Tang N, Zhou C, Qu D, Fang Y, Zheng Y, Hu W, Jin K, Wu W, Duan X, Haick H. A Highly Aligned Nanowire-Based Strain Sensor for Ultrasensitive Monitoring of Subtle Human Motion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001363. [PMID: 32390318 DOI: 10.1002/smll.202001363] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface-to-volume ratio as well as the mechanical robustness of nanostructures for obtaining highly-sensitive detection of motion. To do so, highly-aligned nanowires covering a large area were prepared by capillarity-based mechanism. The nanowires exhibit a strain sensor with excellent gauge factor (≈35.8), capable of high responses to various subtle external stimuli (≤200 µm deformation). The wearable strain sensor exhibits also a rapid response rate (≈230 ms), mechanical stability (1000 cycles) and reproducibility, low hysteresis (<8.1%), and low power consumption (<35 µW). Moreover, it achieves a gauge factor almost five times that of microwire-based sensors. The nanowire-based strain sensor can be used to monitor and discriminate subtle movements of fingers, wrist, and throat swallowing accurately, enabling such movements to be integrated further into a miniaturized analyzer to create a wearable motion monitoring system for mobile healthcare.
Collapse
Affiliation(s)
- Ning Tang
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Cheng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ye Fang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ke Jin
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| |
Collapse
|
13
|
Boland CS. Stumbling through the Research Wilderness, Standard Methods To Shine Light on Electrically Conductive Nanocomposites for Future Healthcare Monitoring. ACS NANO 2019; 13:13627-13636. [PMID: 31765126 DOI: 10.1021/acsnano.9b06847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrically conductive nanocomposites are an exciting ever-expanding area of research that has yielded many versatile technologies for wearable health devices. Acting as strain-sensing materials, real-time medical diagnostic tools based on these materials may very well lead to a golden age of healthcare. Currently, the goal in research is to create a material that simultaneously has both a large gauge factor (G) and sensing range. However, a weakness in the area of electromechanical research is the lack of standardization in the reporting of the figure of merit (i.e., G) and the need for other intrinsic metrics to give researchers a more complete view of the research landscape of resistive-type sensors. A paradigm shift in the way in which data are reported is required, to push research in the right direction and to facilitate achieving research goals. Here, we report a standardized method for reporting strain-sensing performance and the introduction of the working factor (W) and the Young's modulus (Y) of a material as figures of merit for sensing materials. Using this standard method, we can define the benchmarks for an optimum sensing material (G > 7, W > 1, Y < 300 kPa) using limits set by standard commercial materials and the human body. Using extrapolated data from 200 publications normalized to this standard method, we can review what composite types meet these benchmark limits, what governs composite performances, the literary trends in composites, and the future prospects of research.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences , University of Sussex , Brighton BN1 9QH , United Kingdom
| |
Collapse
|