1
|
Selvaraj S, Thampy AS. Black Phosphorus: Paving the Way for Flexible Supercapacitors in Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24730-24762. [PMID: 40250834 PMCID: PMC12051831 DOI: 10.1021/acsami.5c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
The utilization of flexible supercapacitors (FSCs) is gaining momentum in the realm of wearable electronics, owing to their multifarious advantages and immense potential for future applications. Black phosphorus (BP) is rapidly emerging as an auspicious material in the field of FSCs. The exceptional features of this material, including its remarkable surface area, excellent carrier mobility, anisotropic characteristics, impressive electrical conductivity, and rapid ion diffusion properties, render it highly suitable for practical applications. Some specifications, such as design, development, and safety concerns of emerging electrode materials for FSCs in wearable electronics, are highlighted here. This review briefly explains the various synthesis methods for bulk BP, single-layer and few-layer BP (FL-BP) fabrication methods, and black phosphorus quantum dots (BPQDs). Both top-down and bottom-up approaches are addressed for producing single/FL-BP. Also, this review discusses the interaction of BP with other 2D materials to make a synergistic effect and compares the electrochemical performance. Discover the latest breakthrough in wearable electronics with the first-ever review of BP-based FSC applications. From technical specifications to real-world applications, this review covers everything to know to stay ahead of the curve. So buckle up and get ready to explore the exciting world of BP-based FSC devices.
Collapse
Affiliation(s)
- Sowmiya Selvaraj
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
2
|
Kang C, Song K, Ha S, Sung Y, Kim Y, Shin KY, Kim BH. Influence of Polypyrrole on Phosphorus- and TiO 2-Based Anode Nanomaterials for Li-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1138. [PMID: 38998743 PMCID: PMC11243682 DOI: 10.3390/nano14131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) and TiO2 have been extensively studied as anode materials for lithium-ion batteries (LIBs) due to their high specific capacities. However, P is limited by low electrical conductivity and significant volume changes during charge and discharge cycles, while TiO2 is hindered by low electrical conductivity and slow Li-ion diffusion. To address these issues, we synthesized organic-inorganic hybrid anode materials of P-polypyrrole (PPy) and TiO2-PPy, through in situ polymerization of pyrrole monomer in the presence of the nanoscale inorganic materials. These hybrid anode materials showed higher cycling stability and capacity compared to pure P and TiO2. The enhancements are attributed to the electrical conductivity and flexibility of PPy polymers, which improve the conductivity of the anode materials and effectively buffer volume changes to sustain structural integrity during the charge and discharge processes. Additionally, PPy can undergo polymerization to form multi-component composites for anode materials. In this study, we successfully synthesized a ternary composite anode material, P-TiO2-PPy, achieving a capacity of up to 1763 mAh/g over 1000 cycles.
Collapse
Affiliation(s)
- Chiwon Kang
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
| | - Kibum Song
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
| | - Seungho Ha
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
| | - Yujin Sung
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
| | - Yejin Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
| | - Keun-Young Shin
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Byung Hyo Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (C.K.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Kumar A, Kim JH, Chang DW. Flexible and Ultra Low Weight Energy Harvesters Based on 2D Phosphorene or Black phosphorus (BP): Current and Futuristic Prospects. CHEMSUSCHEM 2024; 17:e202301718. [PMID: 38318655 DOI: 10.1002/cssc.202301718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Phosphorene, or two-dimensional (2D) black phosphorus, has recently emerged as a competitor of graphene as it offers several advantages, including a tunable band gap, higher on/off current ratio, piezoelectric nature, and biocompatibility. Researchers have succeeded in obtaining several forms of phosphorene, such as nanosheets, nanorods, nanoribbons, and quantum dots, with satisfactory yields. Nanostructures with various controlled properties have been fabricated in multiple devices for energy production. These phosphorene-based devices are lightweight, flexible, and efficient, demonstrating great potential for energy-harvesting applications in sensors and nanogenerators. While ongoing exploration and advancements continue for these lightweight energy harvesters, it is essential to review the current progress in order to develop a future roadmap for the potential use of these phosphorene-based energy harvesters in space programs. They could be employed in applications such as wearable devices for astronauts, where ultralow weight is a vital component of any integrated device. This review also anticipates the growing significance of phosphorene in various emerging applications such as robots, information storage devices, and artificial intelligence.
Collapse
Affiliation(s)
- Avneesh Kumar
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Joo Hyun Kim
- Department of Polymer Engineering and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
4
|
Song K, Ha S, Shin KY. Highly Conductive and Long-Term Stable Phosphorene-Based Nanocomposite for Radio-Frequency Antenna Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1013. [PMID: 38921889 PMCID: PMC11206362 DOI: 10.3390/nano14121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
In this study, an omnidirectional and high-performance free-standing monopole patch radio-frequency antenna was fabricated using a urea-functionalized phosphorene/TiO2/polypyrrole (UTP) nanocomposite. The UTP nanocomposite antenna was fabricated via ball milling of urea-functionalized phosphorene, chemical oxidative polymerization of the UTP nanocomposite, and mechanical pelletizing of the composite. Based on experiments, the proposed UTP nanocomposite-based antenna exhibited long-term stability in terms of electrical conductivity. After 12 weeks, a slight change in surface resistance was observed. The proposed antenna exhibited high radiation efficiency (78.2%) and low return loss (-36.6 dB). The results of this study suggest the potential of UTP nanocomposite antennas for applications in 5G technology.
Collapse
Affiliation(s)
| | | | - Keun-Young Shin
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (K.S.); (S.H.)
| |
Collapse
|
5
|
Ha S, Shin KY. Fabrication of Ternary Titanium Dioxide/Polypyrrole/Phosphorene Nanocomposite for Supercapacitor Electrode Applications. Molecules 2024; 29:2172. [PMID: 38792034 PMCID: PMC11124188 DOI: 10.3390/molecules29102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted ball milling of BP, followed by sonication. TiO2/PPy/phosphorene nanocomposites can be prepared via chemical oxidative polymerization, which has the advantage of mass production for a one-pot synthesis. The specific capacitance of the ternary nanocomposite was 502.6 F g-1, which was higher than those of the phosphorene/PPy (286.25 F g-1) and TiO2/PPy (150 F g-1) nanocomposites. The PPy fully wrapped around the urea-FP substrate provides an electron transport pathway, resulting in the enhanced electrical conductivity of phosphorene. Furthermore, the assistance of anatase TiO2 nanoparticles enhanced the structural stability and also improved the specific capacitance of the phosphorene. To the best of our knowledge, this is the first report on the potential of phosphorene hybridized with conducting polymers and metal oxides for practical supercapacitor applications.
Collapse
Affiliation(s)
| | - Keun-Young Shin
- Department of Materials Science and Engineering, Soongsil University 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea;
| |
Collapse
|
6
|
Kumar A, Chang DW. Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications. Polymers (Basel) 2023; 15:polym15040947. [PMID: 36850230 PMCID: PMC9962990 DOI: 10.3390/polym15040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
With the advent of a new 2D nanomaterial, namely, black phosphorus (BP) or phosphorene, the scientific community is now dedicated to focusing on and exploring this 2D material offering elusive properties such as a higher carrier mobility, biocompatibility, thickness-dependent band gap, and optoelectronic characteristics that can be harnessed for multiple applications, e.g., nanofillers, energy storage devices, field effect transistors, in water disinfection, and in biomedical sciences. The hexagonal ring of phosphorus atoms in phosphorene is twisted slightly, unlike how it is in graphene. Its unique characteristics, such as a high carrier mobility, anisotropic nature, and biocompatibility, have attracted much attention and generated further scientific curiosity. However, despite these interesting features, the phosphorene or BP poses challenges and causes frustrations when it comes to its stability under ambient conditions and processability, and thus in order to overcome these hurdles, it must be conjugated or linked with the suitable and functional organic counter macromolecule in such a way that its properties are not compromised while providing a protection from air/water that can otherwise degrade it to oxides and acid. The resulting composites/hybrid system of phosphorene and a macromolecule, e.g., a polymer, can outperform and be exploited for the aforementioned applications. These assemblies of a polymer and phosphorene have the potential for shifting the paradigm from exhaustively used graphene to new commercialized products offering multiple applications.
Collapse
|
7
|
Xin X, Xu Y, Wuliji H, Sun F, Liu Q, Wang Z, Wei TR, Zhao X, Song X, Gao L. Covalently Assembled Black Phosphorus/Conductive C 3N 4 Hybrid Material for Flexible Supercapacitors Exhibiting a Superlong 30,000 Cycle Durability. ACS NANO 2023; 17:657-667. [PMID: 36542067 DOI: 10.1021/acsnano.2c09970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Black phosphorus (BP) has been demonstrated as a promising electrode material for supercapacitors. Currently, the main limitation of its practical application is the low electrical conductivity and poor structure stability. Hence, BP-based supercapacitors usually severely suffer from low capacitance and poor cycling stability. Herein, a chemically bridged BP/conductive g-C3N4 (BP/c-C3N4) hybrid is developed via a facile ball-milling method. Covalent P-C bonds are generated through the ball-milling process, effectively preventing the structural distortion of BP induced by ion transport and diffusion. In addition, the overall electrical conductivity is significantly enhanced owing to the sufficient coupling between BP and highly conductive c-C3N4. Moreover, the imbalanced charge distribution around the C atom can induce the generation of a local electric field, facilitating the charge transfer behavior of the electrode material. As a result, the BP/c-C3N4-20:1 flexible supercapacitor (FSC) exhibits an outstanding volumetric capacitance of 42.1 F/cm3 at 0.005 V/s, a high energy density of 5.85 mW h/cm3, and a maximum power density of 15.4 W/cm3. More importantly, the device delivers excellent cycling stability with no capacitive loss after 30,000 cycles.
Collapse
Affiliation(s)
- Xipeng Xin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yifeng Xu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hexige Wuliji
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fei Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qingdong Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zezhen Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Tian-Ran Wei
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaofeng Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xuefeng Song
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen518057, China
| | - Lian Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
8
|
Girirajan M, Alagarsamy NB, Ramachandran K, Manimuthu RP, Pazhanivel D, Muthusamy KK, Sakkarapani S. Two dimensional layered bismuthene nanosheets with ultra-fast charge transfer kinetics as a superior electrode material for high performance asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ranjan P, Gaur S, Yadav H, Urgunde AB, Singh V, Patel A, Vishwakarma K, Kalirawana D, Gupta R, Kumar P. 2D materials: increscent quantum flatland with immense potential for applications. NANO CONVERGENCE 2022; 9:26. [PMID: 35666392 PMCID: PMC9170864 DOI: 10.1186/s40580-022-00317-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 05/08/2023]
Abstract
Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young's moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Snehraj Gaur
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Himanshu Yadav
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ajay B Urgunde
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Vikas Singh
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Avit Patel
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Kusum Vishwakarma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Deepak Kalirawana
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
10
|
Zhou T, Zhang W, Fu H, Fang J, Chen C, Wang Z. Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors. NANOTECHNOLOGY 2021; 33:085602. [PMID: 34768241 DOI: 10.1088/1361-6528/ac394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The MnO/C composites were obtained by co-precipitation method, which used Mn3O4nanomaterials as precursors and dopamine solution after ultrasonic mixing and calcination under N2atmosphere at different temperatures. By studying the difference of MnO/C nanomaterials formed at different temperatures, it was found that with the increase of calcination temperature, the materials appear obvious agglomeration. The optimal calcination temperature is 400 °C, and the resulting MnO/C is a uniformly dispersed slender nanowire structure. The specific capacitance of MnO/C nanowires can reach 356 F g-1at 1 A g-1. In the meantime, the initial capacitance of MnO/C nanowires remains 106% after 5000 cycles. Moreover, the asymmetric supercapacitor was installed, which displays a tremendous energy density of 30.944 Wh kg-1along with a high power density of 10 kW kg-1. The composite material reveals a promising prospect in the application of supercapacitors.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry & Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wenjun Zhang
- School of Chemistry & Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Hao Fu
- School of Chemistry & Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Jingyuan Fang
- School of Chemistry & Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Chunnian Chen
- School of Chemistry & Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zhongbing Wang
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| |
Collapse
|
11
|
Ultra-small Cu–Ni nanoalloy as a high-performance supercapacitor electrode material and highly durable methanol oxidation electrocatalyst. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
El-Mansy M, Ibrahim M, Suvitha A, Abdelsalam H, Osman W. Boosted electronic, optical, and NLO responses of homo P-nanoclusters via conducting polymeric substituents. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Singu BS, Goda ES, Yoon KR. Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|