Lee C, Kang SW. Derivation of porous cellulose propionate using hydrated hydroxyl groups and hydraulic pressure.
Int J Biol Macromol 2024;
262:130240. [PMID:
38368993 DOI:
10.1016/j.ijbiomac.2024.130240]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
This study aimed to enhance the thermal stability of microporous separators by introducing cellulose propionate (CP) as an innovative polymer matrix material, supplemented with glycerin as an additive. CP/glycerin composite membranes were created using hydraulic pressure techniques to reinforce essential separator properties. SEM analysis unveiled interconnected pores crucial for efficient ion transport, initiating water flux measurements at 5 bar. These measurements showcased improved mechanical strength, resulting in a porosity of 74.1 %. FT-IR spectroscopy illustrated CP-glycerin interactions, inducing plasticization and facilitating pore formation. Thermal Gravimetric Analysis (TGA) demonstrated superior thermal stability in CP/glycerin composite membranes compared to cellulose acetate (CA). Differential Scanning Calorimetry (DSC) revealed a slight reduction in thermal stability within a specific temperature range due to glycerin-induced plasticization effects. Nonetheless, the melting temperature (Tm) of CP/glycerin membranes increased to 188.4 °C, indicating heightened stability at elevated temperatures. Despite pressure-induced pore formation, CP/glycerin membranes exhibited enhanced thermal stability, suggesting reinforced molecular interactions. Overall, this study introduces a novel CP/glycerin composite membrane featuring improved thermal stability, enhanced strength, and controlled pore structures essential for efficient lithium-ion battery applications.
Collapse