1
|
Xie H, Ma S, He Z. Facile preparation of PANI/MoOx nanowires decorated MXene film electrodes for electrochemical supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
2
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Radhakanth S, Singhal R. In–situ synthesis of MnO dispersed carbon nanofibers as binder-free electrodes for high-performance supercapacitors. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Yang YX, Ge KK, ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. RARE METALS 2022; 41:3957-3975. [DOI: 10.1007/s12598-022-02091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 01/06/2025]
|
5
|
Diantoro M, Istiqomah I, Fath YA, Mufti N, Nasikhudin N, Meevasana W, Alias YB. Hierarchical Activated Carbon-MnO 2 Composite for Wide Potential Window Asymmetric Supercapacitor Devices in Organic Electrolyte. MICROMACHINES 2022; 13:1989. [PMID: 36422418 PMCID: PMC9696615 DOI: 10.3390/mi13111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The consumption of electrical energy grows alongside the development of global industry. Generating energy storage has become the primary focus of current research, examining supercapacitors with high power density. The primary raw material used in supercapacitor electrodes is activated carbon (AC). To improve the performance of activated carbon, we used manganese dioxide (MnO2), which has a theoretical capacitance of up to 1370 Fg-1. The composite-based activated carbon with a different mass of 0-20% MnO2 was successfully introduced as the positive electrode. The asymmetric cell supercapacitors based on activated carbon as the anode delivered an excellent gravimetric capacitance, energy density, and power density of 84.28 Fg-1, 14.88 Wh.kg-1, and 96.68 W.kg-1, respectively, at 1 M Et4NBF4, maintaining 88.88% after 1000 test cycles.
Collapse
Affiliation(s)
- Markus Diantoro
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
- Center of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Istiqomah Istiqomah
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Yusril Al Fath
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
- Center of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Nasikhudin Nasikhudin
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Worawat Meevasana
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Pugolovkin LV, Levin EE, Arkharova NA, Orekhov AS, Urvanov SA, Mordkovich VZ, Tsirlina GA. Cathodic deposition of manganese oxide for fabrication of hybrid recharging materials based on flexible CNT cloth. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zhu C, He Q, Yao H, Le S, Chen W, Chen C, Wang S, Duan X. Amino-functionalized NH 2-MIL-125(Ti)-decorated hierarchical flowerlike Znln 2S 4 for boosted visible-light photocatalytic degradation. ENVIRONMENTAL RESEARCH 2022; 204:112368. [PMID: 34774832 DOI: 10.1016/j.envres.2021.112368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing novel heterojunction photocatalysts with visible-light response and remarkable photocatalytic activity have been verified to applying for the photodegradation of antibiotics in water environment. Herein, NH2-MIL-125(Ti) was integrated with flowerlike ZnIn2S4 to construct NH2-MIL-125(Ti)@ZnIn2S4 heterostructure using a one-pot solvothermal method. The photocatalytic performance was evaluated by the degradation of tetracycline (TC) under visible light illumination. The optimized NM(2%)@ZIS possesses a photodegradation rate (92.8%) and TOC removal efficiency (58.5%) superior to pristine components, which can be principally attributed to the positive cooperative effects of well-matched energy level positions, strong visible-light-harvesting capacity, and abundant coupling interfaces between the two. Moreover, the probable TC degradation mechanism was also clarified using the active species trapping experiments. This study inspires further design and construction of NH2-MIL-125(Ti) and ZnIn2S4 based photocatalysts for effective removal of antibiotics in water environment.
Collapse
Affiliation(s)
- Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Haiqian Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shukun Le
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Wenxia Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
9
|
Tang C, Li M, Du J, Wang Y, Zhang Y, Wang G, Shi X, Li Y, Liu J, Lian C, Li L. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. J Colloid Interface Sci 2022; 608:1162-1172. [PMID: 34735852 DOI: 10.1016/j.jcis.2021.10.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Increasing the electrochemical stability window and working temperature range of supercapacitor aqueous electrolyte is the major task in order to advance aqueous electrolyte-based supercapacitors. Here, a supramolecular induced new electrolyte of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in dimethyl sulfoxide (DMSO) and water co-solvent system is proposed. Adjusting the coordination structure among LiTFSI, DMSO, and water in the electrolyte via supramolecular interactions results in its high ionic conductivity, low viscosity, wide electrochemical stability window, and large working temperature range. The new electrolyte-based supercapacitors can work in 2.40 V working potential and 130 °C working-temperature range from -40 to 90 °C. The devices exhibit good electrochemical performances, especially the energy density over 21 Wh kg-1, which is much higher than that with traditional aqueous electrolytes (<10 Wh kg-1). The work paves a way to develop high-performance aqueous electrolytes for supercapacitors.
Collapse
Affiliation(s)
- Cheng Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Manni Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianglong Du
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaling Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Guolong Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaowei Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yingbo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Jiamei Liu
- Instrument Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
10
|
Zhang L, Wu Y, Xia Y, Jin L. High capacitance of polypyrrole hydrogel electrode synthesized by polymerization of conjugated pyrrole salt. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chang Y, Jiao Y, Li DJ, Liu XL, Han H. Glycosylated zein as a novel nanodelivery vehicle for lutein. Food Chem 2021; 376:131927. [PMID: 34971886 DOI: 10.1016/j.foodchem.2021.131927] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Glucosamine-glycosylated zein (GLZ) generated by transglutaminase was developed as a novel delivery vehicle to prepare lutein-loaded glycosylated zein nanoparticles (GLZ-LUT). GLZ-LUT exhibited a polydispersed spherical microstructure, lutein was embedded into GLZ to form nanocomplexes via self-assembly, they had a lower zeta potential and an average particle size of less than 200 nm. Compared to lutein-loaded zein nanoparticles (Zein-LUT), the lutein entrapment efficiency of GLZ-LUT was increased from 81.55% to 89.60%. Infrared spectroscopy (FTIR) analysis results confirmed that zein was successfully modified and that lutein was encapsulated by hydrophobic zein and GLZ. Moreover, GLZ showed significantly higher solubilization of lutein than Zein-LUT and significantly improved the in vitro release of lutein in the simulated gastrointestinal tract. The in vitro antioxidant activity of lutein was also enhanced by the encapsulation of zein and glycosylated zein. These findings indicated that GLZ represent a potentially efficient and promising nanodelivery carrier for lutein compounds.
Collapse
Affiliation(s)
- Ying Chang
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Yan Jiao
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.
| | - Da-Jing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao-Lan Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - He Han
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
12
|
Abu Elella MH, Goda ES, Gamal H, El-Bahy SM, Nour MA, Yoon KR. Green antimicrobial adsorbent containing grafted xanthan gum/SiO 2 nanocomposites for malachite green dye. Int J Biol Macromol 2021; 191:385-395. [PMID: 34537301 DOI: 10.1016/j.ijbiomac.2021.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023]
Abstract
Recently, removal of synthetic dyes, especially cationic dye of malachite green (MG), and inhibition of the growth of pathogenic microorganism from drinking water have gained much interest due to their high toxic potency for aquatic biosystems. Herein, a new dye adsorbent with outstanding antibacterial activity was fabricated based on xanthan gum (XG) and SiO2 nanoparticles through ultrasonication followed by the crosslinking polymerization with vinyl imidazole monomer. The nano adsorbents were characterized with various techniques such as FTIR, XRD, SEM, EDX, and TEM. The nanocomposites were applied as a filter for discarding MG dye and killing the growth of bacterial strains such as E.coli and S.aureus which are considered as the common impurities for drinking water. The data revealed that a maximum adsorption capacity was recorded as 99.5% (Qmax = 588.2 mg/g) at optimum conditions including 10 mg nanocomposite, 10 mL of MG dye (450 ppm), pH = 7, the temperature of 30 °C, and the adsorption time was adjusted within 6 h. The process of dye adsorption was applied to the common isotherm models of Langmuir, Temkin, and Freundlich, and the findings showed that the adsorption behavior was well fitted with the Langmuir one (R2 = 0.9983). Moreover, different adsorption kinetic models such as pseudo-first order, pseudo-second order, and intra-particle diffusion were studied for understanding the mechanism of MG adsorption onto nanocomposite surface. It was found that both intraparticle diffusion and pseudo-first-order have participated evenly in the adsorption mechanism of MG dye. Ultimately, the as-prepared nanocomposites were tested against the growth of S. aureus, and E.coli manifesting a superior inhibition diameter as 23.5 ± 0.50, and 25.33 ± 0.47 mm against E.coli, and S. aureus, respectively. Therefore, our new XG-g-PVI/SiO2 adsorbent is a very promising adsorbent for the fast and efficient capture of dyes from aqueous solutions.
Collapse
Affiliation(s)
| | - Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt.
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A Nour
- Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt
| | - Kuk Ro Yoon
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
13
|
Synthesis, crystal structure and battery-like studies on a new acylpyrazolone-based mixed-ligand Cu(II) complex. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Ultra-small Cu–Ni nanoalloy as a high-performance supercapacitor electrode material and highly durable methanol oxidation electrocatalyst. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
|
16
|
Goda ES, Abu Elella MH, Sohail M, Singu BS, Pandit B, El Shafey AM, Aboraia AM, Gamal H, Hong SE, Yoon KR. N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 2021; 182:680-688. [PMID: 33838196 DOI: 10.1016/j.ijbiomac.2021.04.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/13/2023]
Abstract
A green and scalable approach for the preparation of few-layered graphene utilizing the biowaste of potato peels has been developed. The potato peels have been dried and carbonized to obtain a new graphite structure that has been exfoliated in N-methylene phosphonic acid chitosan (MPC). The exfoliation process assisted the formation of graphene sheets with a high size diameter and quality of 50% based on the weight of graphite structure. The graphene sheets were green decorated with silver nanoparticles using microwave power to obtain new nanocomposites. The mass ratio between the graphite and silver nitrate was optimized and observed to change the morphology and size diameter of silver nanoparticles. The as-prepared MPC structure, graphene, and silver decorated graphene nanocomposites were characterized using 1HNMR, FTIR, XRD, UV/Vis spectrophotometer, SEM, and TEM besides tested as antimicrobial agents. The bacterial performance was also controlled by changing the number of AgNPs distributed on graphene sheets based on the mass ratios of graphite/AgNO3. The inhibition diameter of silver decorated graphene was considerably increased to 24.8, and 20.1 mm as in the case of MPC-GRP-Ag30 composite compared to the pure graphene (11.2, 13.5 mm) for E. coli and S. aureus, consecutively proposing that the blade edge of graphene sheets can destroy the bacteria membrane and release silver cations promptly that are directed for the interaction with the cytoplasmic parts of the bacteria cell. Such findings offer green and biocompatible antibacterial agents based on the graphene derived from the biowaste products.
Collapse
Affiliation(s)
- Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt.
| | | | - Muhammad Sohail
- Advanced Energy and System Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bal Sydulu Singu
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bidhan Pandit
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, Place Eugène Bataillon, Montpellier, 34095, Cedex 5, France; Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - A M El Shafey
- Chemistry Department, Faculty of Science and Arts, King Khalid University, Sarat Ebidah, Saudi Arabia
| | - Abdelaziz M Aboraia
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Sang Eun Hong
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea.
| | - Kuk Ro Yoon
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea.
| |
Collapse
|