1
|
Wang L, Tang J, Ren S, Hu H, Yang X, Chen X. A novel dual-mode colorimetric and ratiometric fluorescence method for detecting isocarbophos based on S, N-CDs inhibiting Fe 3O 4@Cu-BTC nanozyme activity. Talanta 2025; 290:127810. [PMID: 40020615 DOI: 10.1016/j.talanta.2025.127810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Although many colorimetric methods have been developed for on-site pesticide detection, most exhibit low sensitivity and limited resistance to interference. To address these issues, this study developed a novel dual-mode colorimetric-ratiometric fluorescence method for isocarbophos (ICP) detection using sulfur and nitrogen co-doped carbon nanodots (S, N-CDs) to inhibit catalytic Fe3O4@Cu-BTC nanozyme activity. The synthesized Fe3O4@Cu-BTC nanozymes with higher peroxidase-like activity were inhibited by S, N-CDs. The inhibitory mechanism was deeply investigated and was ascribed to (1) the restriction of the reaction between Fe3O4@Cu-BTC and hydrogen peroxide (H2O2), which decreased the ·OH production, and (2) the ·OH scavenging ability of the S, N-CDs, forming the basis of the dual-mode method. The Fe3O4@Cu-BTC/Apt-complementary strand (CS)/S, N-CDs hybridization complexes demonstrated minimal to no peroxidase-like activity, preventing H2O2 from oxidizing o-phenylenediamine (OPD) to produce yellow fluorescent 2,3-diaminophenazine (DAP). Meanwhile, the detection system demonstrated a low fluorescence intensity ratio (I575/I465) at an excitation wavelength of 390 nm. However, the presence of ICP caused the CS/S, N-CDs to separate from the Fe3O4@Cu-BTC/Apt due to the high affinity between Apt and ICP. Then, the Fe3O4@Cu-BTC/Apt-ICP complexes recovered peroxidase-like activity, which promoted DAP production, accompanied by a pronounced fluorescence intensity ratio (I575/I465). In optimum conditions, the detection limits (LODs) were 2.79 ng/mL (colorimetric) and 0.26 ng/mL (ratiometric fluorescence), respectively. The feasibility of the proposed method was verified via three spiked samples, yielding recovery rates of between 86.08 % and 112.64 %, indicating the significant potential for the highly sensitive, accurate on-site detection of ICP in actual samples.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| | - Jiangchuan Tang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Shanshan Ren
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Haixia Hu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Keçili R, Hussain G, Hussain CM. Nano-engineered eco-friendly materials for food safety: Chemistry, design and sustainability. Food Chem 2025; 465:141906. [PMID: 39541682 DOI: 10.1016/j.foodchem.2024.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The sensitive detection, extraction and analysis of organic compounds such as pharmaceuticals as contaminants in food is very crucial. For this purpose, the effective utilization of sustainable nanomaterials is a promising strategy that combines the benefits of sustainability principles with nanotechnology to ensure the quality and safety of food products. Eco-friendly nanomaterials are distinguished by their exceptional properties, including sustainable synthesis, minimized ecological impact, and production from renewable or waste resources (e.g., cellulose, chitosan, lignin). This review paper elucidates the latest advancements and emerging trends in the development of eco-friendly nanomaterial-based sensor and extraction platforms for the efficient detection and removal of antibiotics as organic contaminants from food samples. The introduction section briefly outlines the significance and benefits of nanomaterials in the construction of sensor platforms. Subsequently, green methodologies for the synthesis of nanomaterials are discussed. Then, the paper progresses with various applications of eco-friendly nanomaterial-based sensor platforms and separation systems towards antibiotic contaminants in food samples. The final section offers conclusions and future perspectives.
Collapse
Affiliation(s)
- Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, 26470 Eskişehir, Türkiye
| | - Ghazanfar Hussain
- Department of Education Lahore, Computer Science and Technology, 54840, Punjab, Pakistan
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
3
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Chen H, Luo K, Xie C, Zhou L. Nanotechnology of carbon dots with their hybrids for biomedical applications: A review. CHEMICAL ENGINEERING JOURNAL 2024; 496:153915. [DOI: 10.1016/j.cej.2024.153915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Yao H, Zhu Z, Liu M, Sun F, Du M, Sun Y, Du B. Multifunctional Nanosystem Based on Ultrasmall Carbon Dots for the Treatment of Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:4970-4984. [PMID: 39022808 DOI: 10.1021/acsbiomaterials.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhang X, Xiong Y, Wang X, Wen Z, Xu X, Cui J, Liu Z, Wei L, An X. MgO-modified biochar by modifying hydroxyl and amino groups for selective phosphate removal: Insight into phosphate selectivity adsorption mechanism through experimental and theoretical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170571. [PMID: 38309336 DOI: 10.1016/j.scitotenv.2024.170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Metal oxides-modified biochars have been widely studied as promising adsorbents for removing phosphate from wastewater discharge. Yet, the low adsorption selectivity towards phosphate severely limits its potential in practical applications. In this study, MgO-modified biochar modified by hydroxyl and amino groups (OH/NH2@MBC) is developed for selective phosphorus recovery from wastewater. As major results, the OH/NH2@MBC exhibits favorable phosphate adsorption performance is superior to that of MBC resin in the presence of co-existing anions (NO3-, Cl-, HCO3- and SO42-) and natural organic matter (humic acid) even actual wastewater, suggesting its superior selectivity towards phosphate. The OH/NH2@MBC shows an excellent phosphate adsorption capacity (43.27 mg/g) and desorption ratio (82.34 %) after five cycles under the condition of anion coexistence (100 mg/L). The experimental and DFT theoretical study reveals that attaching hydroxyl and amino groups onto the MBC surface, which facilitates to inhibiting the side effects of anions (NO3-, Cl-, HCO3-, and SO42-) through Lewis acid-base sites, hydrogen bonds, and metal affinity, and preferentially select adsorption P, contributing greatly to improve phosphate adsorption selectivity. Importantly, the presence of amino and hydroxyl groups can reduce the Fermi level of OH/NH2@MgO(220) and OH/NH2@MgO(200) and improve the adsorption selection for HPO42-. This study provides an effective strategy for enhancing the adsorption selectivity of metal oxides-modified biochars towards phosphate through modifying functional groups.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Youpeng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaohao Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhennan Wen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhongwang Liu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linna Wei
- Analysis and Testing Institute of Xinjiang Uygur Autonomous Region, 830011 Xinjiang, China
| | - Xiongfang An
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
7
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
8
|
Li C, Liu L, Zhang D. Aggregation enhanced emissive orange carbon dots for information encryption and detection of Fe 3+ and tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123504. [PMID: 37866262 DOI: 10.1016/j.saa.2023.123504] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
In this study, N-doped fluorescent carbon dots with aggregation enhanced emission (N-CDs) were synthesized by a simple and rapid microwave-assisted method using o-phenylenediamine (OPD) and urea as raw materials and water as solvent. The fluorescence quantum yield of N-CDs was 20.64 %. N-CDs can be applied as invisible inks for message encryption. Furthermore, the fluorescence intensity of N-CDs can be quenched by Fe3+ and enhanced by tetracycline (TC). Therefore, two fluorescent probes were simultaneously designed in this study. Namely, "turn-off" fluorescence probe for Fe3+ and "turn-on" fluorescence probe for TC. The linear detection range of Fe3+ is from 1 to 70 μM, and detection limit is 0.1011 μM; the linear detection range of TC is from 0.1 to 10 μM, and the detection limit can be as low as 0.0555 μM. In this paper, the mutual interference between Fe3+ and TC was investigated for the first time. The detection of Fe3+ and TC was made more accurate by optimizing pH conditions and adding masking agent.
Collapse
Affiliation(s)
- Chunyan Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lei Liu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Provincial Key Laboratory of Medicinal Molecular Chemistry - State Key Laboratory Breeding Base, Shijiazhuang 050018, China.
| | - Daohan Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
9
|
Alafeef M, Srivastava I, Aditya T, Pan D. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303937. [PMID: 37715112 DOI: 10.1002/smll.202303937] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Carbon dots (CDs) being a new type of carbon-based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom-up and top-down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Indrajit Srivastava
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Dipanjan Pan
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
10
|
Hao Y, Li R, Liu Y, Zhang X, Geng L, Chen S. The on-off-on Fluorescence Sensor of Hollow Carbon Dots for Detecting Hg 2+ and Ascorbic Acid. J Fluoresc 2023; 33:459-469. [PMID: 36441340 DOI: 10.1007/s10895-022-03057-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
Carbon dots (CDs) have excellent fluorescence properties and can be used in many research fields. In this paper, carbon dots were prepared by microwave-assisted pyrolysis of citric acid and urea, characterized by transmission electron microscope (TEM), X-ray diffractometer (XRD), 13C-NMR spectrum, zeta potential, Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption and fluorescence spectra, and detected the Hg2+ and ascorbic acid (AA) sequentially. It showed that carbon dots were hollow, spherical particles and less than 10 nm, photoluminescence quantum yield of carbon dots was about 15%. The CDs were selective and sensitive to Hg2+ and AA based on the "on-off-on" fluorescence behavior. The detection limits of CDs for Hg2+ and AA were 0.138 μM and 0.212 μM, respectively. Fluorescence response mechanism of CDs was also discussed.
Collapse
Affiliation(s)
- Yunping Hao
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ronghui Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanxu Liu
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xuhong Zhang
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
11
|
Liu Y, Sun K, Shi N, Li R, Zhang J, Zhao J, Geng L, Lei Y. Dual Functions of Nitrogen and Phosphorus Co-Doped Carbon Dots for Drug-Targeted Delivery aAnd Two-Photon Cell Imaging. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
12
|
Hydrophobic self-cleaning micro-nano composite polyethylene-based agricultural plastic film with light conversion and abrasion resistance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Chen S, Hao Y, Li R, Liu Y, Li J, Geng L. N-doped carbon dots as the multifunctional fluorescent probe for mercury ion, glutathione and pH detection. NANOTECHNOLOGY 2023; 34:125501. [PMID: 36548986 DOI: 10.1088/1361-6528/acade7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Recently, carbon dots (CDs) have exhibited promising applications in the fluorescence detection of various ions and biomolecules. In this work, one kind of nitrogen-doped CDs (N-CDs) with high fluorescence intensity was synthesized, characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Fourier-transform infrared, UV-vis absorption spectra, and fluorescence spectra. The results show that the spherical and uniform N-CDs (quantum yield: 60.2%) have remarkable fluorescence properties and photostability, which makes N-CDs can be utilized as an 'on-off-on' sensor for Hg2+and glutathione (GSH). In addition, the pH-sensitive behavior of N-CDs makes it also applicable to H+detection under acid conditions (pKa = 3.53). The linear range of the 'turn-off' sensor detecting Hg2+was 0.014-50μM, with a 0.014μM limit of detection (LOD). GSH was detected by the fluorescence 'turn-on' method with a linear range of 0.125-60μM and a LOD of 0.125μM. The outstanding performance of N-CDs makes it potential applications in ecological pollution and biomolecule visualization monitoring.
Collapse
Affiliation(s)
- Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Yunping Hao
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Ronghui Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Yanxu Liu
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jinxia Li
- School of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, People's Republic of China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| |
Collapse
|
14
|
Zhao N, Song J, Ye H, Zhao L. A pH-dependent N, P co-doped carbon dots as fluorescent probe for malachite green assay and its visual application based on fluorescent hydrogel kit. Colloids Surf B Biointerfaces 2023; 221:112985. [DOI: 10.1016/j.colsurfb.2022.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
15
|
Xiao Y, Zheng H, Du M, Zhang Z. Investigation on the Potential Application of Na-Attapulgite as an Excipient in Domperidone Sustained-Release Tablets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238266. [PMID: 36500360 PMCID: PMC9738564 DOI: 10.3390/molecules27238266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
In this study, Na-attapulgite was explored as an excipient to prepare domperidone sustained-release tablets and test them in accordance with United States Pharmacopoeia requirements. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) were employed to explore the compatibility between Na-attapulgite and domperidone. The XRD and DSC show no interaction between the drug and Na-attapulgite. The FTIR spectrum indicates a shift in the absorption of N-H in the drug molecule, which can be explained by the hydrogen bonding interaction between the N-H in the DOM molecule and the -OH on the surface of Na-ATP. The diameter, hardness, friability and drug content of the tablets were measured, and they all met the relevant requirements of the United States Pharmacopoeia. In addition, the tablets with Na-attapulgite as excipient exhibit a better release performance within the release time of 12 h. These results demonstrate that the domperidone sustained-release tablets have been successfully prepared by using Na-attapulgite as an excipient. The doping of Na-ATP in domperidone sustained-release tablets improves the cytocompatibility. Moreover, with the increase of Na-ATP content, cells proliferate remarkably and cell activity is significantly enhanced.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiyu Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Meng Du
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhe Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9321-9765
| |
Collapse
|
16
|
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. NANOSCALE 2022; 14:14695-14710. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges. After CD contact with serum, we show that protein corona identity is influenced by CD surface charge properties, which in turn impacts CD uptake and viability loss in macrophages. In particular, CDs with high ζ-potential (>+30 mV) and charge density (>2 μmol mg-1) are the most highly internalized, and their cell uptake is strongly correlated with a corona enriched in vitronectin, fibulin, fetuin, adiponectin and alpha-glycoprotein. On the contrary, CDs with a lower ζ-potential (+11 mV) and charge density (0.01 μmol mg-1) are poorly internalized, while having a corona with a very different protein signature characterized by a high abundance of apolipoproteins (APOA1, APOB and APOC), albumin and hemoglobin. These data illustrate how corona characterization may contribute to a better understanding of CD cellular fate and biological effects, and provide useful information for the development of CDs for biomedical applications.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
17
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorg Med Chem 2022; 72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
|
19
|
Xu Q, Tang Y, Zhu P, Zhang W, Zhang Y, Solis OS, Hu TS, Wang J. Machine learning guided microwave-assisted quantum dot synthesis and an indication of residual H 2O 2 in human teeth. NANOSCALE 2022; 14:13771-13778. [PMID: 36102636 DOI: 10.1039/d2nr03718a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current preparation methods of carbon quantum dots (CDs) involve many reaction parameters, which leads to many possibilities in the synthesis processes and high uncertainty of the resultant production performance. Recently, machine learning (ML) methods have shown great potential in correlating the selected features in many applications, which can help understand the relevant structure-function relationships of CDs and discover better synthesis recipes as well. In this work, we employ the ML approach to guide the blue CD synthesis in microwave systems. After optimizing the synthesis parameters and conditions, the quantum yield (QY) increases to about 200% higher than the average value of the prepared samples without ML guidance. The obtained CDs are applied as fluorescent probes to monitor hydrogen peroxide (H2O2) in human teeth. The CD probe exhibits a linear relationship with the concentration of H2O2 ranging from 0 to 1.1 M with a lower detection limit of 0.12 M, which can effectively detect the residual H2O2 after bleaching teeth. This work shows that the adopted ML methods have considerable advantages in guiding the synthesis of high-quality CDs, which could accelerate the development of other novel functional materials in energy, biomedical, and environmental remediation applications.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yaoyao Tang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Weiye Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yuqi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Oliver Sanchez Solis
- Department of Mechanical Engineering, California State University, Los Angeles, California, 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, California, 90032, USA
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
20
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
21
|
Mdlovu NV, Lin KS, Weng MT, Lin YS. Design of doxorubicin encapsulated pH-/thermo-responsive and cationic shell-crosslinked magnetic drug delivery system. Colloids Surf B Biointerfaces 2021; 209:112168. [PMID: 34715504 DOI: 10.1016/j.colsurfb.2021.112168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The upsurge in cancer cases, such as liver cancer, has claimed millions of lives globally and has prompted the development of novel nanodrug delivery systems. These systems allow cancer drugs to be encapsulated in nanocarriers and delivered to tumor sites, and accordingly, help reduce side effects of the current chemotherapeutic treatments. Herein, we prepared nanocarriers comprising magnetic iron oxide (MIO) nanoparticles that were surface modified with crosslinked Pluronic F127 (PF127) and branched polyethylenimine (bPEI) to form MIOpoly nanocarriers. These nanocarriers were then loaded with doxorubicin (DOX) anticancer drug to form the MIOpoly-DOX complex. The nanocarriers were magnetite and possessed superparamagnetic properties. Small-angle neutron scattering (SANS) analysis indicated that the nanocarriers were thermoresponsive and spherically structured. The characteristic peaks at 1285, 1619, 2844, 2919, 2900, 2840, and 3426 cm-1, corresponding to those of CN, -NH2, -CH2, and OH-, confirmed the successful crosslinking, coating of PF127-bPEI polymers on the surface of MIO nanoparticles and DOX conjugation. The bioavailability of the nanocarriers indicated a more than 85% cell viability when using HepG2 liver cancer cells. A pH (54.8% release in 48 h; pH = 5.4) and temperature (51.0% release in 48 h; 42 °C)-dependent release of DOX was observed, displaying a Korsmeyer-Peppas kinetics model at low pH and Weibull model at high temperatures. The high DOX fluorescence observed for MIOpoly-DOX indicated a high cellular uptake enhanced by alternating magnetic field. These results suggest that MIOpoly synthesized using a combined approach of surface crosslinking and grafted with PF127-bPEI appear to offer promising properties as drug delivery system. Therefore, the nanocarriers developed in the study possess a great potential for targeted delivery and thereby circumventing the limitations of conventional chemotherapy.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan.
| | - You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| |
Collapse
|