1
|
Darvishi S, Sadjadi S, Heravi M. Post-functionalized cellulose/metal-organic framework composite with sulfonic acid: An efficient, rapid and recyclable bio-based solid acid catalyst for the synthesis of 5-hydroxymethylfurfural. Int J Biol Macromol 2024; 281:135866. [PMID: 39477734 DOI: 10.1016/j.ijbiomac.2024.135866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
A new acid catalyst derived from renewable sources was developed using an ultrasound-assisted approach. This involved the formation of a metal-organic framework called MIL-88(Fe) in the presence of carboxymethylated-cellulose (CMC). Subsequently, the catalyst underwent a post-synthetic modification to introduce further acidic -SO3H groups into the structure of the CMC/MIL-88(Fe) composite. Various examinations were carried out that validated the successful creation of the CMC/MIL-88(Fe)-SO3H catalyst. The effectiveness of the catalyst was assessed in the process of solid acid catalysis, specifically in the dehydration of fructose to produce 5-hydroxymethylfurfural (HMF). Through the employment of Response Surface Method (RSM) optimization, it was determined that utilizing 34 wt% of the catalyst at a temperature of 90 °C for 30 min resulted in a remarkable 98 % HMF yield. The catalyst exhibited good reusability, as it retained its catalytic effectiveness throughout four consecutive cycles. Comparative catalytic investigations involving CMC and CMC/MIL-88(Fe) composite without sulfonation revealed the superior activity of CMC/MIL-88(Fe)-SO3H catalyst, emphasizing the collaborative effect of CMC, MIL-88(Fe), and the impact of post-functionalization with -SO3H on the performance of the catalyst.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Majid Heravi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
2
|
Farooq M, Thulasiraman AV, Manzoor Z, Tripathi S, Nisa FU, Farooq A, Rasool S, Akhoon RH, Shah MY, Gani KM. Comprehensive characterization of unscientifically disposed municipal solid waste (MSW) in Kashmir Region, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:450. [PMID: 38613635 DOI: 10.1007/s10661-024-12581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.
Collapse
Affiliation(s)
- Muneeb Farooq
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | | | - Zahoor Manzoor
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| | - Sachin Tripathi
- Sustainability Cluster, Department of HSE and Civil Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Farhat Un Nisa
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Asif Farooq
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Saheem Rasool
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Reyaz Hussain Akhoon
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Muhammad Yousuf Shah
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India.
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
3
|
Alengebawy A, Ran Y, Ghimire N, Osman AI, Ai P. Rice straw for energy and value-added products in China: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-32. [PMID: 37362014 PMCID: PMC10267560 DOI: 10.1007/s10311-023-01612-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023]
Abstract
The rise of global waste and the decline of fossil fuels are calling for recycling waste into energy and materials. For example, rice straw, a by-product of rice cultivation, can be converted into biogas and by-products with added value, e.g., biofertilizer, yet processing rice straw is limited by the low energy content, high ash and silica, low nitrogen, high moisture, and high-quality variability. Here, we review the recycling of rice straw with focus on the global and Chinese energy situations, conversion of rice straw into energy and gas, biogas digestate management, cogeneration, biogas upgrading, bioeconomy, and life cycle assessment. The quality of rice straw can be improved by pretreatments, such as baling, ensiling, and co-digestion of rice straw with other feedstocks. The biogas digestate can be used to fertilize soils. The average annual potential energy of collectable rice straw, with a lower heating value of 15.35 megajoule/kilogram, over the past ten years (2013-2022) could reach 2.41 × 109 megajoule.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070 China
- Technology & Equipment Center for Carbon Neutrality, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yi Ran
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070 China
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Nirmal Ghimire
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, 44600 Nepal
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070 China
- Technology & Equipment Center for Carbon Neutrality, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Perveen F, Farooq M, Naeem A, Humayun M, Saeed T, Khan IW, Abid G. Catalytic conversion of agricultural waste biomass into valued chemical using bifunctional heterogeneous catalyst: A sustainable approach. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|