1
|
Cui Y, Chen Y, Cao Z, Xu L, He J, Zhu Z, Lian L, Luo X, Yang Z, Chen M. Oxidation of Toluene over the Pt-Embedded Mesoporous CeO 2 Hollow Nanospheres with Advanced Catalytic Performances. Inorg Chem 2024; 63:19972-19990. [PMID: 39377731 DOI: 10.1021/acs.inorgchem.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this study, the novel Pt-embedded mesoporous CeO2 hollow nanospheres (Pt-MS-CeO2-H) with varying Pt contents (0.5-3.0 wt %) were facilely prepared. The Pt nanoparticles were one-pot embedded within the mesoporous shell of Pt-MS-CeO2-H and assisted with the reduction Ostwald ripening process. The traditional preparation methods often face challenges, such as the uneven distribution or aggregation of nanoparticles, as well as difficulty in maintaining high catalytic activity at low Pt content. Compared with the traditional supported Pt/MS-CeO2 catalyst, the embedding strategy facilitated precise control over the position, distribution, and uniformity of Pt nanoparticles within the CeO2 mesoporous shell. Additionally, the encapsulation process of Pt nanoparticles played a pivotal role in generating oxygen vacancies and activating surface chemical adsorption of oxygen. Resultantly, the toluene oxidation performances of 1Pt-MS-CeO2-H catalyst showed much lower T90 (171 °C) than 1Pt/MS-CeO2 (311 °C). To elucidate the underlying reasons, in situ diffuse reflectance infrared Fourier transform spectroscopy of toluene oxidation was employed to identify the reaction intermediates and pathways over these catalysts. In summary, the Pt-embedded mesoporous CeO2 hollow nanosphere catalysts were considered as potential candidates when designing high-performance toluene catalytic oxidation catalysts.
Collapse
Affiliation(s)
- Yan Cui
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210004, China
| | - Yusheng Chen
- Academy of Environmental Planning and Design, Co. Ltd. Nanjing University, Nanjing 210024, China
| | - Zhen Cao
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Jing He
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Zehui Zhu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Linshui Lian
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Xue Luo
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
| | - Zhenya Yang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210004, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044 Nanjing, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
| |
Collapse
|
2
|
Cui B, Wang S, Guo X, Zhao Y, Rohani S. An Integrated Electrochemical System for Synergistic Cathodic Nitrate Reduction and Anodic Sulfite Oxidation. Molecules 2023; 28:4666. [PMID: 37375220 DOI: 10.3390/molecules28124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Electrochemical reduction of nitrate has broad application prospects. However, in traditional electrochemical reduction of nitrate, the low value of oxygen produced by the anodic oxygen evolution reaction and the high overpotential limit its application. Seeking a more valuable and faster anodic reaction to form a cathode-anode integrated system with nitrate reaction can effectively accelerate the reaction rate of the cathode and anode, and improve the utilization of electrical energy. Sulfite, as a pollutant after wet desulfurization, has faster reaction kinetics in its oxidation reaction compared to the oxygen evolution reaction. Therefore, this study proposes an integrated cathodic nitrate reduction and anodic sulfite oxidation system. The effect of operating parameters (cathode potential, initial NO3--N concentration, and initial SO32--S concentration) on the integrated system was studied. Under the optimal operating parameters, the nitrate reduction rate in the integrated system reached 93.26% within 1 h, and the sulfite oxidation rate reached 94.64%. Compared with the nitrate reduction rate (91.26%) and sulfite oxidation rate (53.33%) in the separate system, the integrated system had a significant synergistic effect. This work provides a reference for solving nitrate and sulfite pollution, and promotes the application and development of electrochemical cathode-anode integrated technology.
Collapse
Affiliation(s)
- Bing Cui
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shizhao Wang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofu Guo
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yingying Zhao
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada
| |
Collapse
|
3
|
Tang J, Yao S, Yao R, Liu H, Chen M, Zhong Y, Yu X, Yin A, Sun J. Insight into radical-nonradical coupling activation pathways of peroxymonosulfate by Cu xO for antibiotics degradation. CHEMOSPHERE 2023; 318:137970. [PMID: 36708784 DOI: 10.1016/j.chemosphere.2023.137970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this work, a heterogeneous catalyst of CuxO was rationally designed by using Cu-based metal organic frameworks (marked Cu-BDC) as the template, and was used to degrade tetracycline (TC) via activation of peroxymonosulfate (PMS). The optimal CuxO-350 showed excellent catalytic efficiency for TC degradation, and the reaction rate constant (0.104 min-1) was 8 times higher than that (0.013 min-1) of raw Cu-BDC. The characterization observations confirmed that CuxO-350 possessed multiple valence states (CuO and Cu2O) and oxygen vacancies (Ov), both of which were favorable for the activation of PMS, resulting in promoting the generation of active species in the CuxO-350 + PMS system. Different from the free radical pathway in Cu-BDC + PMS system, a radical-nonradical coupling process was detected in the CuxO-350 + PMS system, which was confirmed by quenching experiments and EPR measurements. Moreover, the toxicity prediction showed that the toxicity of degradation intermediates declined compared with TC. This work not only opened up a new strategy for the rational design and preparation of high-efficient catalysts by employing metal organic frameworks precursors, but also offered an insight into the reaction mechanism of PMS activation through a radical-nonradical coupling process catalyzed by CuxO-350 derived from Cu-BDC.
Collapse
Affiliation(s)
- Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| |
Collapse
|
4
|
Zhao F, Shi Y, Xu L, Chen M, Xue Y, Wu CE, Qiu J, Cheng G, Xu J, Hu X. Designing Highly Efficient Cu 2O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu 2O-CuO Interface Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3020. [PMID: 36080056 PMCID: PMC9457833 DOI: 10.3390/nano12173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition-precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.
Collapse
Affiliation(s)
- Fen Zhao
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yiyu Shi
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Qiu
- Jiangsu Shuangliang Environmental Technology Co., Ltd., Jiangyin 214400, China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingxin Xu
- State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
5
|
Jiang Z, Tian M, Jing M, Chai S, Jian Y, Chen C, Douthwaite M, Zheng L, Ma M, Song W, Liu J, Yu J, He C. Modulating the Electronic Metal-Support Interactions in Single-Atom Pt 1 -CuO Catalyst for Boosting Acetone Oxidation. Angew Chem Int Ed Engl 2022; 61:e202200763. [PMID: 35347821 DOI: 10.1002/anie.202200763] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 01/17/2023]
Abstract
The development of highly active single-atom catalysts (SACs) and identifying their intrinsic active sites in oxidizing industrial hazardous hydrocarbons are challenging prospects. Tuning the electronic metal-support interactions (EMSIs) is valid for modulating the catalytic performance of SACs. We propose that the modulation of the EMSIs in a Pt1 -CuO SAC significantly promotes the activity of the catalyst in acetone oxidation. The EMSIs promote charge redistribution through the unified Pt-O-Cu moieties, which modulates the d-band structure of atomic Pt sites, and strengthens the adsorption and activation of reactants. The positively charged Pt atoms are superior for activating acetone at low temperatures, and the stretched Cu-O bonds facilitate the activation of lattice oxygen atoms to participate in subsequent oxidation. We believe that this work will guide researchers to engineer efficient SACs for application in hydrocarbon oxidation reactions.
Collapse
Affiliation(s)
- Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
6
|
Jiang Z, Tian M, Jing M, Chai S, Jian Y, Chen C, Douthwaite M, Zheng L, Ma M, Song W, Liu J, Yu J, He C. Modulating the Electronic Metal‐Support Interactions in Single‐Atom Pt
1
−CuO Catalyst for Boosting Acetone Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing 101408 P. R. China
| |
Collapse
|
7
|
Abstract
Copper catalysts have been extensively studied for CO oxidation at low temperatures. Previous findings on the stability of such catalysts, on the other hand, revealed that they deactivated badly under extreme circumstances. Therefore, in this work, a series of KCC−1-supported copper oxide catalysts were successfully prepared by impregnation method, of which 5% CuO/KCC−1 exhibited the best activity: CO could be completely converted at 120 °C. The 5% CuO/KCC−1 catalyst exhibited better thermal stability, which is mainly attributed to the large specific surface area of KCC−1 that facilitates the high dispersion of CuO species, and because the dendritic layered walls can lengthen the movement distances from particle-to-particle, thus helping to slow down the tendency of active components to sinter. In addition, the 5% CuO/KCC−1 has abundant mesoporous and surface active oxygen species, which are beneficial to the mass transfer and promote the adsorption of CO and the decomposition of Cu+–CO species, thus improving the CO oxidation performance of the catalyst.
Collapse
|