1
|
Boubakri A, Elgharbi S, Bouguecha S, Orfi J, El Oudi M, Bechambi O, Hafiane A. An in-depth analysis of membrane distillation research (1990-2023): Exploring trends and future directions through bibliometric approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121942. [PMID: 39067338 DOI: 10.1016/j.jenvman.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This bibliometric analysis offers a comprehensive investigation into membrane distillation (MD) research from 1990 to 2023. Covering 4389 publications, the analysis sheds light on the evolution, trends, and future directions of the field. It delves into authorship patterns, publication trends, prominent journals, and global contributions to reveal collaborative networks, research hotspots, and emerging themes within MD research. The findings demonstrate extensive global participation, with esteemed journals such as Desalination and the Journal of Membrane Science serving as key platforms for disseminating cutting-edge research. The analysis further identifies crucial themes and concepts driving MD research, ranging from membrane properties to strategies for mitigating membrane fouling. Co-occurrence analysis further highlights the interconnectedness of research themes, showcasing advancements in materials, sustainable heating strategies, contaminant treatment, and resource management. Overlay co-occurrence analysis provides temporal perspective on emerging research trends, delineating six key topics that will likely shape the future of MD. These include innovations in materials and surface engineering, sustainable heating strategies, emerging contaminants treatment, sustainable water management, data-driven approaches, and sustainability assessments. Finally, the study serves as a roadmap for researchers and engineers navigating the dynamic landscape of MD research, offering insights into current trends and future trajectories, ultimately aiming to propel MD technology towards enhanced performance, sustainability, and global relevance.
Collapse
Affiliation(s)
- Ali Boubakri
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.
| | - Sarra Elgharbi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Salah Bouguecha
- Department of Mechanical Engineering, Faculty of Engineering, King Abdul-Aziz University, P.B: 80204, Jeddah, 21589, Saudi Arabia
| | - Jamel Orfi
- Mechanical Engineering Department, King Saud University, PO Box 800, Riyadh, 11421, Saudi Arabia; K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mabrouka El Oudi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Olfa Bechambi
- Al Ghazalah, University of Hail, Ha'il, Saudi Arabia
| | - Amor Hafiane
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia
| |
Collapse
|
2
|
Hou M, Li Q, Che Y. Hydrophilic Modification of Polytetrafluoroethylene (PTFE) Capillary Membranes with Chemical Resistance by Constructing Three-Dimensional Hydrophilic Networks. Polymers (Basel) 2024; 16:1154. [PMID: 38675073 PMCID: PMC11053467 DOI: 10.3390/polym16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polytetrafluoroethylene (PTFE) capillary membranes, known for the great chemical resistance and thermal stability, are commonly used in membrane separation technologies. However, the strong hydrophobic property of PTFE limits its application in water filtration. This study introduces a method whereby acrylamide (AM), N, N-methylene bisacrylamide (MBA), and vinyltriethoxysilane (VTES) undergo free radical copolymerization, followed by the hydrolysis-condensation of silane bonds, resulting in the formation of hydrophilic three-dimensional networks physically intertwined with the PTFE capillary membranes. The modified PTFE capillary membranes prepared through this method exhibit excellent hydrophilic properties, whose water contact angles are decreased by 24.3-61.2%, and increasing pure water flux from 0 to 1732.7-2666.0 L/m2·h. The enhancement in hydrophilicity of the modified PTFE capillary membranes is attributed to the introduction of hydrophilic groups such as amide bonds and siloxane bonds, along with an increase in surface roughness. Moreover, the modified PTFE capillary membranes exhibit chemical resistance, maintaining the hydrophilicity even after immersion in strong acidic (3 wt% HCl), alkaline (3 wt% NaOH), and oxidative (3 wt% NaClO) solutions for 2 weeks. In conclusion, this promising method yields modified PTFE capillary membranes with great hydrophilicity and chemical resistance, presenting substantial potential for applications in the field of water filtration.
Collapse
Affiliation(s)
- Mingpeng Hou
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Qiuying Li
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Yanchao Che
- Zhenjiang Fluorine Innovation Material Technology Co., Ltd., Danyang 212322, China
| |
Collapse
|
3
|
da Silva Biron D, Espíndola JC, Subtil EL, Mierzwa JC. A New Approach to the Development of Hollow Fiber Membrane Modules for Water Treatment: Mixed Polymer Matrices. MEMBRANES 2023; 13:613. [PMID: 37504979 PMCID: PMC10385592 DOI: 10.3390/membranes13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
In this study, mixed matrix hollow fiber polymeric membranes were prepared using polyethersulfone (PES) and polyvinylidene fluoride (PVDF) as polymers in their composition. N-methyl-2-pyrrolidone (NMP) was used as a solvent and demineralized water with an electrical conductivity below 3 μS·cm-1 was used as a non-solvent. A new approach to producing enhanced polymeric hollow fiber membranes based on the preparation of a simple blend PVDF/PES solution, and on the conformation of the composite membranes through the extrusion technique followed by the phase inversion process in a non-solvent bath, was applied. The investigation focused on the preparation of polymeric membranes with different polymer ratios and further assessment of the effects of these proportions on the membrane performance and in specific physical properties. The amount of PVDF ranged from 10 to 90% with 10% steps. The presence of PVDF, although it increased the membranes' plasticity, had a negative effect on the overall mechanical properties of the composite membranes. Scanning electron microscopy (SEM) results showed good dispersion of both polymers in the polymeric matrix. Furthermore, the membrane permeability showed a slight negative correlation with contact angle, suggesting that membrane hydrophilicity played an important role in membrane permeability. Finally, it was found that membranes with low ratios of PVDF/PES may have potential for water treatment applications, due to the combined advantageous properties of PES and PVDF.
Collapse
Affiliation(s)
- Dionísio da Silva Biron
- International Reference Center on Water Reuse of the University of São Paulo (IRCWR-USP), Environmental and Hydraulic Department (PHA), Polytechnic School of the University of São Paulo (USP), São Paulo 05508-020, SP, Brazil
| | - Jonathan Cawettiere Espíndola
- International Reference Center on Water Reuse of the University of São Paulo (IRCWR-USP), Environmental and Hydraulic Department (PHA), Polytechnic School of the University of São Paulo (USP), São Paulo 05508-020, SP, Brazil
| | - Eduardo Lucas Subtil
- Laboratório de Tecnologias de Tratamento de Águas Urbanas Servidas e Reúso de Água (LabTAUS) of the Federal University of ABC, L005-Block L-Campus Santo André, São Paulo 09210-580, SP, Brazil
| | - José Carlos Mierzwa
- International Reference Center on Water Reuse of the University of São Paulo (IRCWR-USP), Environmental and Hydraulic Department (PHA), Polytechnic School of the University of São Paulo (USP), São Paulo 05508-020, SP, Brazil
| |
Collapse
|
4
|
Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water - A review. CHEMOSPHERE 2023; 322:138152. [PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | |
Collapse
|
5
|
Yap JX, Leo CP, Chan DJC, Mohd Yasin NH, Show PL. Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes. CHEMOSPHERE 2022; 307:135625. [PMID: 35820481 DOI: 10.1016/j.chemosphere.2022.135625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microalgae cultivation in open ponds requires a large footprint, while most photobioreactors need improvement in the ratio of surface to volume and energy consumption. In this study, polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) hollow fiber membranes with a large surface area were rearranged into open-ended and dead-ended configurations to improve the air-liquid interface cultivation of Navicula incerta. N. incerta were successfully grown on the porous membrane surface with the nutrients circulating inside the lumen. Fourier-transform infrared spectra showed the accumulation of polysaccharides, proteins and humic acids. Hydrophilic polysaccharides reduced water contact angles on PES and PVDF membranes to 37.2 ± 2.6° and 55.7 ± 3.3°, respectively. However, the porosity of PES (80.1 ± 1.1%) and PVDF (61.3 ± 4.5%) membranes were not significantly affected even after cultivation and harvesting of N. incerta. Scanning electron images further confirmed that N. incerta, cell debris and extracellular organic matter accumulated on the membrane. With large pores and a hydrophobic surface, PVDF hollow fiber membranes offered a greater improvement in N. incerta cell growth rate compared to PES hollow fiber membranes despite using different configurations. In the dead-ended configuration, they even attained the greatest improvement in N. incerta growth rate, up to 54.0%. However, PES hollow fiber membranes only achieved improvement in harvesting efficiency within the range of 18.7-38.0% due to weak cell adhesion. PVDF hollow fiber membranes significantly promoted the growth of microalgae N. incerta through the air-liquid interface system, leading to potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia
| |
Collapse
|
6
|
Tao MJ, Cheng SQ, Han XL, Yi F, Li RH, Rong Y, Sun Y, Liu Y. Alignment of MXene based membranes to enhance water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|